The unicellular microorganisms "Amoeba Proteus" locomotion simulation with the use of movable cellular automata method | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2018. № 42. DOI: 10.17223/20710410/42/8

In this work, the method of movable cellular automata is applied to the modeling of amoeba-like locomotion. A significant advantage of this method is the possibility of transition from a static grid to the concept of neighbors. A unicellular biological organism "Amoeba Proteus" was chosen as an object. The basic principles of locomotion, namely the movement of the amoeba on the basis of cytoskeletal transformations inside the cell, are considered. This approach most accurately describes the process of locomotion in the living cell. The rules of cellular automata interactions were found for the constructed model according to the concept of neighbors. As a result, a computer model imitating amoeboid locomotion was obtained.
Download file
Counter downloads: 355
  • Title The unicellular microorganisms "Amoeba Proteus" locomotion simulation with the use of movable cellular automata method
  • Headline The unicellular microorganisms "Amoeba Proteus" locomotion simulation with the use of movable cellular automata method
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 42
  • Date:
  • DOI 10.17223/20710410/42/8
Keywords
подвижные клеточные автоматы, амебоидная подвижность, компьютерное моделирование, принцип соседства, movable cellular automata, amoeba-like movement, computer simulation, neighborhood principle
Authors
References
De Bruyn P. P. H. Theories of amoeboid movement // Quarterly Rev. Biology. 1947. V. 22. No. 1. P. 1-24.
Howard J. Mechanics of Motor Proteins and the Cytoskeleton. Massachusetts: Sinauer Associates, 2001. 384 p.
Shih Y.-L. and Rothfield L. The bacterial cytoskeleton // Microbiology and Molecular Biology Rev. 2006. V. 70. No. 3. P. 729-754.
Романовский Ю. М., Степанова Н. В., Чернавский Д. С. Математическое моделирование в биофизике. М.: Наука, 1975. 344с.
Чернавский Д. С. Проблема происхождения жизни и мышления с точки зрения современной физики // УФН. 2000. Т. 170. №2. С. 157-183. http://ufn.ru/ru/articles/2000/ 2/с/
De Cerqueira Gatti M.A. and de Lucena C. J. P. Cell Simulation: an Agent-based Software Engineering Approach. Rio de Janeiro: Monografias em Ciencia da Computacao, 2008. No. 18/08. 17p.
Романовский Ю. М., Теплов В. А. Физические основы клеточного движения. Механизмы самоорганизации амебоидной подвижности // УФН. 1995. Т. 165. №5. С. 555-578.
Schlick T. Molecular Modeling and Simulation: An Interdisciplinary Guide. Ed. 2. N.Y.: Springer Science and Business Media, 2010. 723 p.
Nishimura S. I. and Sasai M. Modulation of the reaction rate of regulating protein induces large morphological and motional change of amoebic cell // J. Theor. Biol. 2007. No. 245. P. 230-237.
Nishimura S. I., Ueda M., and Sasai M. Non-Brownian dynamics and strategy of amoeboid cell locomotion // Phys. Rev. E. 2012. V. 85. http://www.biomedsearch.com/nih/ Non-Brownian-dynamics-strategy-amoeboid/22680500.html
Nishimura S. I., Ueda M., and Sasai M. Cortical factor feedback model for cellular locomotion and cytofission // PLoS Comput Biol. 2009. No. 5(3): e1000310.
Umedachi T., Ito K., and Ishiguro A. Soft-bodied amoeba-inspired robot that switches between qualitatively different behaviors with decentralized stiffness control // Adaptive Behavior. 2015. V.23. P. 97-108.
Umedachi T., Horikiri S., Kobayashi R., and Ishiguro A. Enhancing adaptability of amoeboid robot by synergetically coupling two decentralized controllers inspired by true slime mold // Adaptive Behavior. 2015. V.23. P. 109-21.
Graham-Rowe D. Amoebalike robots for search and rescue // MIT Technology Rev. March 29, 2007. www.technologyreview.com/s/407603/amoebalike-robots-for-search-and-rescue/
Doursat R., Sayama H., and Michel O. A review of morphogenetic engineering // Natural Computing. 2013. V. 12. P. 517-535.
Бандман О. Л. Клеточно-автоматные модели естественных процессов и их реализация на современных компьютерах // Прикладная дискретная математика. 2017. №35. C. 102-121.
Psakhie S. G., Ostermeyer G. P., Dmitriev A. I., et al. Method of movable cellular automata as a new trend of discrete computational mechanics. I. Theoretical description // Phys. Mesomechanics. 2000. No. 3(2). P. 5-12.
Psakhie S. G., Horie Y., Ostermeyer G. P., et al. Movable cellular automata method for simulating materials with mesostructure // Theor. Appl. Fracture Mechanics. 2001. V. 37. No. 1-3. P. 311-334.
Shilko E.V., Psakhie S.G., Schmauder S., et al. Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure // Comput. Mater. Sci. 2015. V. 102. P. 267-285.
Жихаревич В. В., Газдюк K. П. Алгоритм определения соседних элементов множества подвижных клеточных автоматов при условии фиксированного количества соседей // Вестник Национального технического университета Харьковский политехнический институт. Сер. Информатика и моделирование. 2015. №33. С.75-82.
 The unicellular microorganisms
The unicellular microorganisms "Amoeba Proteus" locomotion simulation with the use of movable cellular automata method | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2018. № 42. DOI: 10.17223/20710410/42/8
Download full-text version
Counter downloads: 538