An algorithm for finding the minimum degree of a polynomial over a finite field for a function over a vector space depending on the choice of an irreducible polynomial | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 43. DOI: 10.17223/20710410/43/1

The transformations of the vector space of p-ary vectors of length n, where p is a prime number, are considered. Each such a transformation is assigned to a polynomial over a finite field GF(pn ). The finite field is represented by a residue ring modulo an irreducible polynomial. In general, depending on the choice of the irreducible polynomial, different polynomials over the finite field will correspond to the transformation over the vector space. In this paper, we propose an algorithm for finding the minimal degree of such a polynomial and an irreducible polynomial at which this degree is achieved. The algorithm is based on the calculation of expressions for polynomial coefficients through its values. In the process of the algorithm, the elements of finite fields are treated as polynomials. To compute specific irreducible polynomials, the Euclid algorithm computes the greatest common divisor of these expressions and the polynomial, which is the product of all irreducible polynomials of degree n. To work up to degree d, the algorithm requires storage of O(pn n) elements from GF(p) and O(pn n2 d4 w ) operations of addition and multiplication modulo p where w is the number of elements on which the polynomial is nonzero. Thus, the algorithm is especially effective for functions that have many zero values. The minimal degree polynomials for the S-boxes of block ciphers (GOST 28147-89, ICEBERG, LUFFA, LUCIFER, SERPENT, AES, PRESENT, GOST 34.12-2015) as well as the irreducible polynomials at which this degree is achieved have been computed.
Download file
Counter downloads: 179
  • Title An algorithm for finding the minimum degree of a polynomial over a finite field for a function over a vector space depending on the choice of an irreducible polynomial
  • Headline An algorithm for finding the minimum degree of a polynomial over a finite field for a function over a vector space depending on the choice of an irreducible polynomial
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 43
  • Date:
  • DOI 10.17223/20710410/43/1
Keywords
конечное поле, неприводимый многочлен, булевы функции, блочный шифр, finite field, irreducible polynomial, Boolean functions, block cipher
Authors
References
Youssef A. M. and Gong G. On the interpolation attacks on block ciphers // Intern. Workshop on Fast Software Encryption. Berlin, Heidelberg, 2000. P. 109-120
Lidl R. and Niederreiter H. Finite Fields. Cambridge: Cambridge University Press, 1997. V. 20
McWilliams F. J. and Sloane N. J. A. The Theory of Error-Correcting Codes. N.Y.: Elsevier, 1977
Sorenson J. An analysis of Lehmer's Euclidean GCD algorithm // Proc. Intern. Symp. on Symbolic and Algebraic Computation. Montreal, Canada, 1995. P. 257-397
Carlet C. Boolean functions for cryptography and error correcting codes // Y. Crama and P. Hammer (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge: Cambridge University Press, 2010. P. 257-397
Jakobsen T. and Knudsen L. R. The interpolation attack on block ciphers // Intern. Workshop on Fast Software Encryption. Springer, 1997. P. 28-40
ГОСТ 28147-89. Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. М.: Издательство стандартов, 1989
Popov V., Kurepkin I., and Leontiev S. RFC 4357: Additional Cryptographic Algorithms for Use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001 and GOST R 34.11-94 Algorithms. М.: IETF, 2006
Standaert F. X., Piret G., Rouvroy G., et al. ICEBERG: An involutional cipher efficient for block encryption in reconfigurable hardware // Intern. Workshop on Fast Software Encryption. Berlin, Heidelberg, 2004. P. 279-298
De Canniere C., Sato H., and Watanabe D. Hash Function Luffa: Specification. Submission to NIST SHA-3 Competition. 2008. http://www.hitachi.com/rd/yrl/crypto/luffa
Sorkin A. Lucifer, a cryptographic algorithm // Cryptologia. 1984. V. 8. No. 1. P. 22-42
Biham E., Anderson R., and Knudsen L. Serpent: A new block cipher proposal // Intern. Workshop on Fast Software Encryption. Berlin, Heidelberg, 1998. P. 222-238
Daemen J. and Rijmen V. The Design of Rijndael. AES - the Advanced Encryption Standard. Berlin, Heidelberg: Springer Science & Business Media, 2013
Bogdanov A., Knudsen L.R., Leander G., et al. PRESENT: An ultra-lightweight block cipher // Intern. Workshop on Cryptographic Hardware and Embedded Systems. Berlin, Heidelberg, 2007. P. 450-466
Информационная технология. Криптографическая защита информации. Блочные шифры. М.: Стандартинформ, 2015
 An algorithm for finding the minimum degree of a polynomial over a finite field for a function over a vector space depending on the choice of an irreducible polynomial | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 43. DOI: 10.17223/20710410/43/1
An algorithm for finding the minimum degree of a polynomial over a finite field for a function over a vector space depending on the choice of an irreducible polynomial | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 43. DOI: 10.17223/20710410/43/1
Download full-text version
Counter downloads: 346