Traceability schemes which are applied to the broadcast encryption can prevent unauthorized parties from accessing the distributed data. In a traceability scheme, a distributor encrypts the data and gives each authorized user a unique key suit to decrypt the data. This suit uniquely identifies the recipient and therefore allows the tracing of the source of an unauthorized redistribution. A widely used approach to the constructing good traceability scheme is the use of error-correcting codes with a suitable minimum distance and efficient decoding algorithms. The paper deals with the usage of algebraic geometry codes (AG-codes) of L-construction and Sudan - Guruswami list decoding algorithms in these schemes. We suggest the problem of constructing traceability AG-codes and obtain sufficient conditions for applying them. Let C C Fq^' be the algebraic geometry code constructed using curve of genus g and divisor of degree a. Firstly, if c д/п/а, then C is a traceability code when the number 1, then C can be we obtain several is possible to use of attackers is a maximum of c. Secondly, if a > logq N + g - used to build traceability schemes maintaining N users. Finally, cumbersome bounds on the number of intruders within which it Sudan - Guruswami hard- and soft- decision list decoding algorithms for tracing the unauthorized redistribution source. Based on these derived conditions and some other lemmas, the algorithm for suitable one-point AG-code construction is presented. The algorithm can be polynomially reduced to the Riemann - Roch space basis construction problem. Much attention is given to the algorithm validity and its sample execution. Besides, the paper gives a brief description of AG-codes and Sudan - Guruswami hard- and soft- decision list decoding algorithms.
Download file
Counter downloads: 136
- Title On application of algebraic geometry codes of L-construction in copy protection
- Headline On application of algebraic geometry codes of L-construction in copy protection
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 44
- Date:
- DOI 10.17223/20710410/44/6
Keywords
помехоустойчивое кодирование, схемы специального широковещательного шифрования, алгеброгеометрические коды, error-correcting codes, traceability schemes, algebraic geometry codesAuthors
References
Stinson D. R. and Wei R. Combinatorial properties and constructions of traceability schemes and frameproof codes // SIAM J. Discr. Math. 1998. V. 11. No. 1. P. 41-53
Staddon J. N., Stinson D. R., and Wei R. Combinatorial properties of frameproof and traceability codes // IEEE Trans. Inform. Theory. 2001. V. 47. No. 3. P. 1042-1049
Silverberg A., Staddon J., and Walker J. Applications of list decoding to tracing traitors // IEEE Trans. Inform. Theory. 2003. V. 49. No. 5. P. 1312-1318
Деундяк В. М., Мкртичян В. В. Исследование границ применения схемы защиты информации, основанной на PC-кодах // Дискретный анализ и исследование операций. 2011. Т. 18. № 3. С. 21-38
Деундяк В. М., Евпак С. А., Мкртичян В. В. Исследование свойств q-ичных помехоустойчивых кодов Рида - Маллера как кодов для защиты от копирования // Проблемы передачи информации. 2015. Т. 51. № 4. С. 99-111
Гоппа В. Д. Алгебраико-геометрические коды // Известия АН СССР. Сер. матем. 1982. Т. 46. № 4. С. 762-781
Guruswami V. and Sudan M. Improved decoding of Reed - Solomon and algebraic-geometric codes // Foundations of Computer Science. Palo Alto: IEEE, 1998. P. 28-37
Fernandez M. and Soriano M. Identification of traitors in algebraic-geometric traceability codes // IEEE Trans. Signal Proc. 2004. V. 52. Iss. 10. P. 3073-3077
Влэдуц С. Г., Ногин Д. Ю., Цфасман М. А. Алгеброгеометрические коды. Основные понятия. М.: МЦНМО, 2003. 504 с
Fiat A. and Naor M. Broadcast encryption // LNCS. 1994. V. 773. P. 480-491
Chor B., Fiat A., and Naor M. Tracing traitors // LNCS. 1994. V. 839. P. 257-270
Hoholdt T., van Lindt J., and Pellikaan R. Algebraic geometry codes // Handbook of Coding Theory / eds. V. S. Pless, W. C. Huffman, and R. A. Brualdi. V. 1. Amsterdam: Elsevier, 1998. P. 871-961
Лэнг С. Алгебра. М.: Мир, 1968. 564 с
Hess F. Computing Riemann - Roch spaces in algebraic function fields and related topics // J. Symbolic Comput. 2002. V. 33. No. 4. P. 425-445
http://magma.maths.usyd.edu.au/magma/ - Magma Computational Algebra System
Shokrollahi A. and Wasserman H. List decoding of algebraic-geometric codes // IEEE Trans. Inform. Theory. 1999. V. 45. No. 2. P. 432-437
Van Der Geer G. and Van Der Vlugt M. Tables of curves with many points // Mathematics of Computation. 2000. V. 69. No. 230. P. 797-810
Мак-Вильямс Ф. Дж., Слоэн Н. Дж. А. Теория кодов, исправляющих ошибки. М.: Связь, 1979. 744 с

On application of algebraic geometry codes of L-construction in copy protection | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 44. DOI: 10.17223/20710410/44/6
Download full-text version
Counter downloads: 365