On generic undecidability of Hilbert's tenth problem for polynomial trees | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 44. DOI: 10.17223/20710410/44/8

Generic-case approach to algorithmic problems was suggested by Miasnikov, Kapovich, Schupp and Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. We study generic complexity of the Hilbert's tenth problem for systems of Diophantine equations represented by so-called polynomial trees. Polynomial tree is a binary tree, which leafs are marked by variables or the constant 1, and internal vertices are marked by operations of addition, subtraction and multiplication. Every polynomial with integer coefficients can be represented by a polynomial tree. We prove generic undecidability of the decidability problem for Diophantine equations represented by polynomial trees. To prove this theorem, we use the method of generic amplification, which allows to construct generically undecidable problems from the problems undecidable in the classical sense. The main ingredient of this method is a technique of cloning, which unites inputs of the problem together in the large enough sets of equivalent inputs. Equivalence is understood in the sense that the problem is solved similarly for them.
Download file
Counter downloads: 98
  • Title On generic undecidability of Hilbert's tenth problem for polynomial trees
  • Headline On generic undecidability of Hilbert's tenth problem for polynomial trees
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 44
  • Date:
  • DOI 10.17223/20710410/44/8
Keywords
генерическая сложность, диофантовы уравнения, generic complexity, Diophantine equations
Authors
References
Kapovich I., Miasnikov A., Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks // J. Algebra. 2003. V. 264. No. 2. P. 665-694
Матиясевич Ю. В. Диофантовость перечислимых множеств // Доклады АН СССР. 1970. Т. 191. №2. С. 279-282
Myasnikov A. and Romankov V. Diophantine cryptography in free metabelian groups: Theoretical base // Groups, Complexity, Cryptology. 2014. V. 6. No. 2. P. 103-120
Романьков В. А. Диофантова криптография на бесконечных группах // Прикладная дискретная математика. 2012. №2(16). С. 15-42
Романьков В. А. Алгебраическая криптография. Омск: ОмГУ, 2013
Rybalov A. Generic complexity of the Diophantine problem // Groups, Complexity, Cryptology. 2013. V. 5. No. 1. P. 25-30
Рыбалов А. О генерической неразрешимости Десятой проблемы Гильберта // Вестник Омского университета. 2011. № 4. С. 19-22
Рыбалов А. О генерической сложности проблемы разрешимости систем диофантовых уравнений в форме Сколема // Прикладная дискретная математика. 2017. № 37. С. 100-106
Кнут Д. Искусство программирования. М.: Вильямс, 2010. 720с
 On generic undecidability of Hilbert's tenth problem for polynomial trees | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 44. DOI: 10.17223/20710410/44/8
On generic undecidability of Hilbert's tenth problem for polynomial trees | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 44. DOI: 10.17223/20710410/44/8
Download full-text version
Counter downloads: 364