A graph G is said to be Hamiltonian if it contains a spanning cycle, i.e. a cycle that passes through all of its vertices. The Hamiltonian cycle problem is NP-complete, and many sufficient conditions have been found after the first sufficient condition proposed by Dirac in 1952. In this paper for all graphs with a number of vertices up to 12, the most popular sufficient degree based conditions for Hamiltonian graph are compared: theorems by Dirac, Ore, Posa, Chvatal and Bondy-Chvatal. The number of graphs which satisfy each condition is counted. With the number of vertices from 3 to 12, the number of graphs satisfying the Dirac condition is 1, 3, 3, 19, 29, 424, 1165, 108376, 868311, 495369040; the number of graphs satisfying the Ore condition is 1, 3, 5, 21, 68, 503, 4942, 128361, 5315783, 575886211; the number of graphs satisfying the Posha condition is 1, 3, 6, 31, 190, 2484, 53492, 2683649, 216082075, 40913881116; the number of graphs satisfying the Chvatal condition is 1, 3, 6, 34, 194, 2733, 54435, 2914167, 218674224, 43257613552 and the number of graphs satisfying the Bondy - Chvatal condition is 1, 3, 7, 45, 352, 5540, 157016, 8298805, 802944311, 141613919605. This result is the best one: about 90 % of the Hamiltonian graphs satisfy condition proposed by Bondy and Chvatal in 1976. The FHCP Challenge Set is a collection of 1001 instances of the Hamiltonian Cycle Problem, ranging in size from 66 vertices up to 9528. All graphs from the FHCP Challenge Set were checked whether they satisfy considered conditions. It turned out that 11 graphs satisfy the Bondy - Chvatal condition: no. 59 (with 400 vertices), no. 72 (460), no. 79 (480), no. 84 (500), no.90 (510), no.96 (540), no. 128 (677), no. 134 (724), no. 150 (823), no. 162 (909), and no. 188 (with 1123 vertices). For these graphs we can check and find Hamiltonian cycle using Bondy - Chvatal's theorem with computational complexity O(n4) where n is the number of graph vertices.
Download file
Counter downloads: 333
- Title Comparison of sufficient degree based conditions for Hamiltonian graph
- Headline Comparison of sufficient degree based conditions for Hamiltonian graph
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 45
- Date:
- DOI 10.17223/20710410/45/6
Keywords
гамильтонов граф, FHCP, Hamiltonian graph, Dirac's theorem, Ore's theorem, Posa's theorem, Chvatal's theorem, theorem by Bondy and Chvatal, теорема Дирака, теорема Оре, теорема Поша, теорема Хватала, теорема Бонди-ХваталаAuthors
References
Dirac G. A. Some theorems on abstract graphs // Proc. London Math. Soc. 1952. V. 2. P. 69-81
Ore O. Note on Hamilton circuits // Amer. Math. Monthly. 1960. V. 67. P. 55
Ore O. Arc coverings of graphs // Ann. Mat. Pura Appl. 1961. V. 55. P. 315-322
Posa L. On the circuits of finite graphs // Magyar Tud. Akad. Mat. Kutatd Int. Kozl. 1963. V. 8. P. 355-361
Chvatal V. On Hamilton's ideals // J. Combin. Theory. 1972. V. 12. P. 163-168
Bondy J. A. and Chvatal V. A method in graph theory // Discr. Math. 1976. V. 15. Iss. 2. P. 111-135
Gould R. J. Updating the Hamiltonian problem - A survey // J. Graph Theory. 1991. V. 15. No. 2. P. 121-157
Gould R. J. Advances on the Hamiltonian problem - A survey // Graphs and Combinatorics. 2003. V. 19. P. 7-52
DeLeon M. A study of sufficient conditions for Hamiltonian cycles // Rose - Hulman Undergraduate Mathematics J. 2000. V. 1. Iss. 1. Article 6. P. 129-145
Li H. Generalizations of Diracs theorem in Hamiltonian graph theory - A survey // Discr. Math. 2013. V. 313. P. 2034-2053
Харари Ф. Теория графов. М.: Мир, 1973. 300 с
Diestel R. Graph Theory. Heidelberg: Springer Verlag, 2017. 447 p
Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. Лекции по теории графов. М.: Наука, 1990. 384 с
Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика. Графы, матроиды, алгоритмы. Ижевск: НИЦ «РХД», 2001. 288 с
Касьянов В. Н., Евстигнеев В. А. Графы в программировании: обработка, визуализация и применение. СПб.: БХВ-Петербург, 2003. 1104 с
Омельченко А. В. Теория графов. М.: МЦНМО, 2018. 416 с
Абросимов М. Б. О достаточном условии Гудмана - Хедетниеми гамильтоновости графа // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2018. Т. 18. Вып. 3. С. 347-353
McKay B. D. and Piperno A. Practical graph isomorphism. II // J. Symbolic Computation. 2014. No. 60. P. 94-112
The On-Line Encyclopedia of Integer Sequences, 2018 http://oeis.org
Haythorpe M. FHCP Challenge Set: The first set of structurally difficult instances of the Hamiltonian cycle problem // Bulletin of the ICA. 2018. V. 83. P. 98-107
Reinelt G. http://www.iwr.uni-heidelberg.de/groups/comopt∕software∕TSPLIB95∕- TSPLIB, 2018
Comparison of sufficient degree based conditions for Hamiltonian graph | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 45. DOI: 10.17223/20710410/45/6
Download full-text version
Counter downloads: 389