Informational capacity of the Hopfield network with quantized weights | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 45. DOI: 10.17223/20710410/45/11

The use of binary and multilevel memristors in the hardware neural networks implementation necessitates their weight coefficients quantization. In this paper, we investigate the Hopfield network weights quantization influence on its information capacity and resistance to input data distortions. It is shown that, for a weight level number of the order of tens, the capacitance of Hopfield - Hebb network with the quantized weights approximates the capacitance of its version with continuous weights. For a Hopfield projection network, similar result can be achieved only for a weight levels number of the order of hundreds. Experiments show that: 1) binary memristors should be used in Hopfield - Hebb networks, reduced by zeroing all weights in a given row, in which absolute values are strictly less than the maximum weight in the row; 2) in the Hopfield projection networks with quantized weights, multilevel memristors with a weight levels number significantly more than two should be used, with a specific levels number depending on the stored reference vectors dimension, their particular set and the permissible input data noise level.
Download file
Counter downloads: 120
  • Title Informational capacity of the Hopfield network with quantized weights
  • Headline Informational capacity of the Hopfield network with quantized weights
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 45
  • Date:
  • DOI 10.17223/20710410/45/11
Keywords
сети Хопфилда-Хебба, проекционные сети Хопфилда, информационная ёмкость, квантование весов, бинарные и многоуровневые мемристоры, Hopfield-Hebb networks, projection Hopfield networks, information capacity, weight quantization, binary and multilevel memristors
Authors
References
Haykin S. Neural Networks: A Comprehensive Foundation. Prentice Hall, Inc., 1999
Hopfield J. Neural networks and physical systems with emergent collective computational abilities // Proc. NAS USA. 1982. V. 79. P. 2554-2558
Personnaz L., Guyon I., and Dreyfus G. Collective computational properties of neural networks: New learning mechanisms // Phys. Rev. Ser. A. 1986. V. 34. No. 5. P. 4217-4228
Michel A. N. and Liu D. Qualitative Analysis and Synthesis of Recurrent Neural Networks. N.Y.: Marcel Dekker Inc., 2002
Chua L. Memristor - the missing circuit element // IEEE Trans. Circuit Theory. 1971. V. 18. P. 507-519
Strukov D. B., Snider G. S., Stewart D. R., and Williams R. S. The missing memristor found // Nature. 2008. V. 453. P. 80-83
He W., Sun H., Zhou Y., et al. Customized binary and multi-level HfO2-x-based memristors tuned by oxidation conditions // Scientific Reports. 2017. V. 7. Article No. 10070
Yu S., Gao B., Fang Z., et al. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation // Adv. Mater. 2013. V. 25. P. 1774-1779
Тарков М. С. Построение сети Хемминга на основе кроссбара с бинарными мемристорами // Прикладная дискретная математика. 2018. № 40. С. 105-113
Тарков М. С. Редукция связей автоассоциативной памяти Хопфилда // Прикладная дискретная математика. 2017. № 37. С. 107-113
Folli V., Leonetti M., and Ruocco G. On the maximum storage capacity of the Hopfield model // Frontiers in Comput. Neuroscience. 2017. V. 10. Article 144. www.frontiersin.org
 Informational capacity of the Hopfield network with quantized weights | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 45. DOI: 10.17223/20710410/45/11
Informational capacity of the Hopfield network with quantized weights | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 45. DOI: 10.17223/20710410/45/11
Download full-text version
Counter downloads: 385