Cryptanalytical finite automaton invertibility with finite delay | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 46. DOI: 10.17223/20710410/46/3

The paper continues an investigation of the cryptanalytical invertibility concept with a finite delay introduced by the author for finite automata. Here, we expound an algorithmic test for an automaton A to be cryptanalytically invertible with a finite delay, that is, to have a recovering function f which allows to calculate a prefix of a length m in an input sequence of the automaton A by using its output sequence of a length m + τ and some additional information about A defining a type of its invertibility and known to cryptanalysts. The test finds out whether the automaton A has a recovering function f or not and if it has, determines some or, may be, all of such functions. The test algorithm simulates a backtracking method for searching a possibility to transform a binary relation to a function by shortening its domain to a set corresponding to the invertibility type under consideration.
Download file
Counter downloads: 75
  • Title Cryptanalytical finite automaton invertibility with finite delay
  • Headline Cryptanalytical finite automaton invertibility with finite delay
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 46
  • Date:
  • DOI 10.17223/20710410/46/3
Keywords
finite automata, information-lossless automata, automata invertibility, cryptanalytical invertibility, cryptanalytical invertibility test, конечный автомат, автомат без потери информации, обратимость автоматов, криптаналитическая обратимость, тест криптаналитической обратимости
Authors
References
Agibalov G. P. Cryptanalytic concept of finite automaton invertibility with finite delay. Prikladnaya Diskretnaya Matematika. 2019, no. 44, pp. 34-42
Rasiowa H. Introduction to Modern Mathematics. Amsterdam; London, North-Holland Publishing Company; Warszawa, PWN, 1973. 339 p.
Agibalov G. P. and Belyaev V. A. Tehnologiya Resheniya Kombinatorno-logicheskih Zadach Metodom Sokraschyonnogo Obhoda Dereva Poiska [Technology for Solving Combinatorial-Logical Problems by the Method of Shortened Search Tree Traversal]. Tomsk, TSU Publ., 1981. 126 p. (in Russian)
Christofides H. Graph Theory. An algorithmic Approach. New York; London; San Francisco, Academic Press, 1975
Zakrevskij A., Pottosin Yu., and Cheremisinova L. Combinatorial Algorithms of Discrete Mathematics. Tallinn, TUT Press, 2008. 193 p
 Cryptanalytical finite automaton invertibility with finite delay | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 46. DOI: 10.17223/20710410/46/3
Cryptanalytical finite automaton invertibility with finite delay | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 46. DOI: 10.17223/20710410/46/3
Download full-text version
Counter downloads: 433