Generic-case approach to algorithmic problems was suggested by Miasnikov, Kapovich, Schupp and Shpilrain in 2003. This approach studies behavior of algorithms on typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic complexity of the problem of clustering graphs. In this problem the structure of relations of ob jects is presented as a graph: vertices correspond to ob jects, and edges connect similar ob jects. It is required to divide a set of ob jects into disjoint groups (clusters) to minimize the number of connections between clusters and the number of missing links within clusters. It is proved that under the condition P = NP and P = BPP, for the graph clustering problem there is no polynomial strongly generic algorithm. A strongly generic algorithm solves a problem not on the whole set of inputs, but on its subset, in which the sequence of frequencies of inputs converges exponentially fast to 1 with increasing its size.
Download file
Counter downloads: 100
- Title On generic complexity of the graph clustering problem
- Headline On generic complexity of the graph clustering problem
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 46
- Date:
- DOI 10.17223/20710410/46/6
Keywords
генерическая сложность, кластеризация графа, generic complexity, graph clusteringAuthors
References
Kapovich I., Miasnikov A., Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks // J. Algebra. 2003. V. 264. No. 2. P. 665-694
Гимади Э.Х., Глебов Н.И., Перепелица В.А. Алгоритмы с оценками для задач дискретной оптимизации // Проблемы кибернетики. 1975. Т. 31. С. 35-42
Krivanek, M., and Moravek, J. NP-hard problems in hierarchical-tree clustering // Acta Informatica. 1986. V. 23. P. 311-323
Bansal N., Blum A., and Chawla S. Correlation clustering // Machine Learning. 2004. V. 56. P. 89-113
Shamir R., Sharan R., and Tsur D. Cluster graph modification problems // Discrete Appl. Math. 2004. V. 144. No. 1-2. P. 173-182
Агеев А. А., Ильев В. П., Кононов А. В., Талевнин А. С. Вычислительная сложность задачи аппроксимации графов // Дискретный анализ и исследование операций. Сер. 1. 2006. Т. 13. № 1. С. 3-11
Ильев В. П., Ильева С. Д. О задачах кластеризации графов // Вестник Омского университета. 2016. № 2. C. 16-18
Ильев А. В., Ильев В. П. Об одной задаче кластеризации графа с частичным обучением // Прикладная дискретная математика. 2018. № 42. С. 66-75
Талевнин А. С. О сложности задачи аппроксимации графов // Вестник Омского университета. 2004. № 4. C. 22-24
Impagliazzo R. and Wigderson A. P = BPP unless E has subexponential circuits: Derandomizing the XOR Lemma // Proc. 29th STOC. El Paso: ACM, 1997. P. 220-229
Рыбалов А. Н. О генерической сложности проблемы общезначимости булевых формул // Прикладная дискретная математика. 2016. № 2(32). С. 119-126

On generic complexity of the graph clustering problem | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 46. DOI: 10.17223/20710410/46/6
Download full-text version
Counter downloads: 433