Mutually-recursive formulas for enumerating partitions of the rectangle | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 46. DOI: 10.17223/20710410/46/9

The paper deals with the problem of enumerating the (complete) partitions of a given h × w rectangle into 1 × 2 rectangles (dominos). An algorithm is given to find a system of mutually recursive formulas enumerating all such partitions of a given rectangle of an arbitrary size. The idea is as follows. In fact, the process of finding all partitions is equivalent to the process of growing a binary tree T with vertices representing partial partitions of the given rectangle. In the former process, a descriptor means the border between the part already partitioned and the remaining part of the rectangle. Let φ(v) be the number of extensions of a partial partition v to a complete partition of the rectangle. The tree-growing process terminates as soon as the descriptor of each pendant vertex of T coincides (up to symmetry) with the descriptor of some non-pendant vertex of T . The algorithm for generating recurrence relations for calculating the number of complete partitions is based on the following: the sibling vertex y, or z, of a vertex x in the growing tree corresponds to the partial partition obtained by horizontal or vertical placement of a domino at the left upper corner of the not-yet-partitioned part of the partial partition corresponding to x. The desired recurrence relations are written upon the completion of the tree-growing process, on the base of the equation: φ(x) = φ(y) + φ(z). The main result of this paper is an algorithm for computer generation of recurrence relations, using only the operation of integer addition. Almost all previously known formulas for solutions for the problem contain floating-point operations, which require a long computation time and significant computer resources.
Download file
Counter downloads: 91
  • Title Mutually-recursive formulas for enumerating partitions of the rectangle
  • Headline Mutually-recursive formulas for enumerating partitions of the rectangle
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 46
  • Date:
  • DOI 10.17223/20710410/46/9
Keywords
перечисление разбиений прямоугольника, рекуррентные формулы, перечисление разбиений прямоугольника, рекуррентные формулы, enumeration of rectangle partitions, recurrent formulas
Authors
References
Stanley R. P. Enumerative Combinatorics. V. 2. Cambridge: Cambridge University Press, 1999. 228 p
Montroll E. W. Lattice statistics // Applied Combinatorial Mathematics / ed. E. F. Beckenbach. N.Y.: John Wiley and Sons, 1964. P. 96-143
Караваев А. М., Перепечко С. Н. Задача о димерах на цилиндрах: рекуррентные соотношения и производящие функции // Математическое моделирование. 2014. Т. 26. №11. С. 18-22
Kateleyn P. W. The statistic of dimers on a lattice I: The number of dimer arrangements on quadratic lattice // Physica. 1961. V. 27. P. 1209-1225
Temperley H.N.V. and Fisher M.E. Dimer problem in statistical mechanics - an exact result // Phil. Mag. 1961. V. 6. P. 1061-1063
Matousek J. Thirty-three Miniatures: Mathematical and Algorithmic Applications of Linear Algebra: Amer. Math. Soc., 2010. 182 p
Klarner D. and Pollack J. Domino tilings of rectangles with fixed width // Discr. Math. 1980. V. 32. P. 45-52
Read R. C. A note on tiling rectangles with dominoes // Fib. Q. 1980. V. 18. No. 1. P. 24-27
Graham R. L., Knuth D. E., and Patashnik O. Concrete Mathematics. Massachusetts: Addison-Wesley, 1994. 657 p
Грэхем Р., Кнут Д., Паташник О. Конкретная математика. Основание информатики: пер. с англ. М.: Мир, 1998. 703 с
http://neerc . ifmo . ru/school/archive/1993-1994/ru-olymp-roi-1994-problems . html - Олимпиады по информатике. 1994
Кирюхин В. М. VI Всероссийская олимпиада школьников по информатике // Информатика и образование. 1994. №3. С. 47-50
Волченков С. Г. Задача «Паркет» // Информатика и образование. 1994. №3. С. 52-54
Магомедов А. М., Магомедов Т. А. Компьютерный вывод рекуррентных формул разбиения прямоугольника // Тез. докл. X Белорусской матем. конф., 3-7 ноября 2008 г. Ч. 4. Минск: Институт математики НАН Беларуси, 2008. С. 44
Albahari J. and Albahari B. C# 5.0 in a Nutshell. The Definitive Reference. 5th ed. O'Reilly Media, 2012. 1064 p
Swamy M. N. and Thulasiraman K. Graphs, Networks and Algorithms. N.Y.: Wiley-Inter-science, 1981. 590 p
Магомедов А. М. Цепочечные структуры в задачах о расписаниях // Прикладная дискретная математика. 2016. № 3(33). С. 67-77
Garey M. R. and Jonson D. S. Computers and Intractability. San Francisco: Freeman and Company, 1979. 347 p
Lawler E. L. Combinatorial Optimization: Networks and Matroids. N.Y.: Holt, Rinehart, and Winston, 1976. 384 p
Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. Лекции по теории графов. М.: Книжный дом «Либроком», 2009. 392 с
 Mutually-recursive formulas for enumerating partitions of the rectangle | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 46. DOI: 10.17223/20710410/46/9
Mutually-recursive formulas for enumerating partitions of the rectangle | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2019. № 46. DOI: 10.17223/20710410/46/9
Download full-text version
Counter downloads: 434