A structure of the nearest neighbors collective in a family of partitions of a finite set | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2020. № 47. DOI: 10.17223/20710410/47/1

In this paper, we study partitions of a finite set of some ob jects into disjoint subsets closest to a given (main) partition. The distance between two partitions is taken equal to the sum of squares of numbers of the elements of sets that make up each of the partitions minus twice the sum of squares of the values of the sets forming the intersection of the partitions. For a fixed main partition, all the closest partitions and their number are found. The closest neighbors are always obtained by picking out one of the ob jects into a new set or by merging two single-element sets of the main partition (Theorem 1). The nearest neighbor here is 2(m - 1) from the main partition, where m is the number of objects of the minimum non-singleton of the main partition, if one exists. Otherwise, this distance equals 2. Theorem 2 describes a situation where the number of elements of partitions must be the same. This happens, for example, when both partitions are constructed by the method of k -means for the same k. Here, to construct the nearest neighbor, one of the ob jects moves between the smallest sets of the main partition. Wherein, at least one of them must contain at least two ob jects. The corollaries of both theorems, obtained by accurately calculating the possible number of operations of the described type, give the exact quantities of nearest neighbors of the main partition, depending on its structure. We propose an application of the obtained results to the construction of a statistical criterion for the significance of the difference between two partitions. An example of medical data processing using this criterion is given.
Download file
Counter downloads: 141
  • Title A structure of the nearest neighbors collective in a family of partitions of a finite set
  • Headline A structure of the nearest neighbors collective in a family of partitions of a finite set
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 47
  • Date:
  • DOI 10.17223/20710410/47/1
Keywords
разбиения конечных множеств, кластерная метрика, статистическая значимость различия разбиений, partitions of finite sets, cluster metric, statistical significance of differences of partitions
Authors
References
Brualdi R. A. Introductory Combinatorics. 5th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2017. 624 p
Bender E. A. and Wil liamson S. G. Foundations of Combinatorics with Applications. Mineola, NY: Dover Publ., 2006. 480 p. www.math.ucsd.edu/~ebender/CombText/ch-11.pdf
Birkhoff G. Lattice Theory. 3rd ed. Providence, Rhode Island: AMS, 1991. 420 p
Press W. H., Teukolsky S. A., Vetterling W. T., and Flannery B. P. Numerical Recipes: The Art of Scientific Computing. 3rd ed. Cambridge University Press, 2007. 1235 p
Яглом А. М., Яглом И. М. Вероятность и информация. 3-е изд. М.: Наука, 1973. 513 с
Левенштейн В. И. Двоичные коды с исправлением выпадений, вставок и замещений символов // ДАН СССР. 1965. Т. 163. Вып.4. С. 845-848
Гасфилд Д. Строки, деревья и последовательности в алгоритмах. Информатика и вычислительная биология. СПб.: Невский Диалект БВХ-Петербург, 2003. 654с
Cohen W. W., Rawikumar P., and Fienberg S. E. A comparison of string distance metrics for name-matching tasks // Proc. IIWEB'03, Acapulco, Mexico: AAAI Press, 2003. P. 73-78
Каграманян А. Г., Машталир В. П., Скляр Е. В., Шляхов В. В. Метрические свойства разбиений множеств произвольной природы // Докл. НАН Украины. 2007. Т. 6. С. 35-39
Дронов С. В. Одна кластерная метрика и устойчивость кластерных алгоритмов // Известия АлтГУ. 2011. Т.69. №1/2. С.32-35
Dronov S. V. and Evdokimov E. A. Post-hoc cluster analysis of connection between forming characteristics // Model Assisted Statistics Appl. 2018. V. 13. No. 2. P. 183-192
Дронов С. В. Кратчайшие маршруты семейства кластерных разбиений // Труды семинара по геометрии и математическому моделированию. 2017. № 3. С. 4-12
Gribel D. and Vidal T. HG-means: A scalable hybrid metaheuristic for minimum sum-of-squares clustering // Pattern Recognition. 2019. V. 88. No. 1. P. 569-583
Riordan J. Introduction to Combinatorial Analysis. Mineola, NY: Dover Publ., 2006. 256 p
 A structure of the nearest neighbors collective in a family of partitions of a finite set | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2020. № 47. DOI: 10.17223/20710410/47/1
A structure of the nearest neighbors collective in a family of partitions of a finite set | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2020. № 47. DOI: 10.17223/20710410/47/1
Download full-text version
Counter downloads: 315