A generic approach to algorithmic problems was proposed by Kapovich, Myasnikov, Schupp, and Shpilrain in 2003. Within the framework of this approach, the algorithmic problem is considered not on the whole set of inputs, but on a certain subset of "almost all" inputs. The concept of “almost everything” is formalized by introducing a natural measure on a set of input data. In 2017, A.N. Rybalov introduced the concept of polynomial generic reducibility of algorithmic problems, which preserves the solvability property of the problem for almost all inputs and has the transitivity property, and proved that the classical satisfiability problem for Boolean formulas is complete with respect to this reducibility in the generic analogue of the class NP . In this case, Boolean formulas were represented as binary marked up trees. In this paper, we prove the generic NP-completeness of the satisfiability problem for Boolean circuits.
Download file
Counter downloads: 75
- Title On generic NP-completeness of the problem of Boolean circuits satisfiability
- Headline On generic NP-completeness of the problem of Boolean circuits satisfiability
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 47
- Date:
- DOI 10.17223/20710410/47/8
Keywords
булева схема, генерическая сложность, проблема выполнимости, NP-полнота, Boolean circuit, generic complexity, Boolean satisfiability problem, NP-completenessAuthors
References
Kapovich I., Miasnikov A., Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks // J. Algebra. 2003. V. 264. No. 2. P. 665-694
Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982. 419 с
Levin L. Average case complete problems // SIAM J. Computing. 1987. V. 15. P. 285-286
Gurevich Y. Average case completeness // J. Computer System Sciences. 1991. V. 42. P. 346-398
Рыбалов А. О генерической NP-полноте проблемы выполнимости булевых формул // Прикладная дискретная математика. 2017. №36. С. 106-112
Miasnikov A. and Ushakov A. Generic case completeness // J. Computer System Sciences. 2016. V. 82. No. 8. P. 1268-1282
Сэвидж Д. Сложность вычислений. М.: Факториал, 1998. 368 с

On generic NP-completeness of the problem of Boolean circuits satisfiability | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2020. № 47. DOI: 10.17223/20710410/47/8
Download full-text version
Counter downloads: 314