Many problems about finite graphs and finite fields can be formulated in the universal algebraic geometry, where these objects are considered as algebraic structures in the given language. Algebraic geometry over such objects is closely related to properties of existential theories. From a practical point of view, the most important are questions about decidability and computational complexity of these theories. In this paper we study the computational complexity of existential theories of algebraic structures of finite predicate language. It is known that the existential theory of any algebraic structure with more than one element is NP-hard. We prove that under the conditions P ≠ NP and P = BPP, for this theories there is no polynomial strongly generic algorithm. To prove this theorem we use the method of generic amplification, which allows to construct generically undecidable problems from the problems undecidable in the classical sense. The main ingredient of this method is a technique of cloning, which unites inputs of the problem together in the large enough sets of equivalent inputs. Equivalence is understood in the sense that the problem is solved similarly for them.
Download file
Counter downloads: 97
- Title On generic complexity of the existential theories
- Headline On generic complexity of the existential theories
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 49
- Date:
- DOI 10.17223/20710410/49/9
Keywords
генерическая сложность, конечная алгебраическая система, экзистенциальная теория, generic complexity, finite algebraic structure, existential theoryAuthors
References
Даниярова Э.Ю., Мясников А.Г., Ремесленников В.Н. Алгебраическая геометрия над алгебраическими системами. Новосибирск: СО РАН, 2016. 288с.
Kapovich I., Miasnikov A., Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks // J. Algebra. 2003. V. 264. No. 2. P. 665-694.
Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982. 419с.
Impagliazzo R. and Wigderson A. P = BPP unless E has subexponential circuits: Derandomizing the XOR Lemma // Proc. 29th STOC. El Paso: ACM, 1997. P.220-229.
Кнут Д. Искусство программирования. М.: Вильямс, 2010. 720 с.
Рыбалов А. Н. О генерической сложности проблемы общезначимости булевых формул // Прикладная дискретная математика. 2016. №2(32). С. 119-126.

On generic complexity of the existential theories | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2020. № 49. DOI: 10.17223/20710410/49/9
Download full-text version
Counter downloads: 189