The chromaticity of the join of tree and null graph | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2020. № 50. DOI: 10.17223/20710410/50/7

The chromaticity of the graph G, which is join of the tree Tp and the null graph Oq, is studied. We prove that G is chromatically unique if and only if 1 ≤ p ≤ 3, 1 ≤ q ≤ 2; a graph H and Tp + Op-1 are χ-equivalent if and only if H = T′p + Op-1, where T′p is a tree of order p; H and Tp + Op are χ-equivalent if and only if H ∈ {T′p + Op, T″p+1 + Op-1}, where T′p is a tree of order p, T″p+1 is a tree of order p + 1. We also prove that if p ≤ q, then χ′(G) = ch′(G) = ∆(G); if ∆(G) = |V(G)| - 1, then χ′(G) = ch′(G) = ∆(G) if and only if G ≠ K3.
Download file
Counter downloads: 65
  • Title The chromaticity of the join of tree and null graph
  • Headline The chromaticity of the join of tree and null graph
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 50
  • Date:
  • DOI 10.17223/20710410/50/7
Keywords
chromatic number, chromatically equivalent, chromatically unique graph, chromatic index, list-chromatic index
Authors
References
Behzad M. and Chartrand G. Introduction to the Theory of Graphs. Boston, Allyn and Bacon, 1971.
Birkhoff G. D. A determinant formula for the number of ways of coloring a map. Ann. Math., 1912, vol. 14 (2), pp. 42-46.
Koh K. M. and Teo K. L. The search for chromatically unique graphs. Graphs Combin., 1990, no. 6, pp. 259-285.
Chao C. Y. and Whitehead Jr. E. G. On chromatic equivalence of graphs. Lecture Notes Math., 1978, vol.642, pp. 121-131.
Koh K. M. and Teo K. L. The search for chromatically unique graphs II. Discrete Math., 1997, vol. 172, pp. 59-78.
Tan N. D. and Hung L. X. On colorings of split graphs. Acta Mathematica Vietnammica, 2006, vol. 31, no.3, pp. 195-204.
Vizing V. G. Ob otsenke khromaticheskogo klassa p-grafa [On an estimate of the chromatic class of a p-graph]. Discret. Analiz, 1964, no. 3, pp. 23-30. (in Russian)
Vizing V. G. Raskraska vershin grafa v predpisannye tsveta [Coloring the vertices of a graph in prescribed colors]. Diskret. Analiz, 1976, no. 29, pp. 3-10. (in Russian)
Erdos P., Rubin A. L., and Taylor H. Choosability in graphs. Proc. West Coast Conf. Combin., Graph Theory, and Computing, Arcata, CA, September 1979, no. 26, pp. 125-157.
Hung L. X. List-chromatic number and chromatically unique of the graph K£+Ok. Selecciones Matematicas, Universidad Nacional de Trujillo, 2019, vol. 06(01), pp. 26-30.
Hung L. X. Colorings of the graph Km + Kn. J. Siberian Federal University. Mathematics & Physics, 2020, vol. 13, no. 3, pp. 297-305.
Read R. C. An introduction to chromatic polynomials. J. Combin. Theory, 1968, no. 4, pp. 52-71.
Brenti F. Expansions of chromatic polynomial and log-concavity. Trans. Amer. Math. Soc., 1992, vol. 332, pp. 729-756.
Liu R. Y. A new method to find the chromatic polynomial of a graph and its applications. Kexue Tongbao, 1987, vol. 32, pp. 1508-1509.
Diestel R. Graph Theory. N.Y., Springer Verlag, 2000.
Plantholt M. The chromatic index of graphs with a spanning star. J. Graph Theory, 1981, no. 5, pp. 5-13.
 The chromaticity of the join of tree and null graph | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2020. № 50. DOI: 10.17223/20710410/50/7
The chromaticity of the join of tree and null graph | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2020. № 50. DOI: 10.17223/20710410/50/7
Download full-text version
Counter downloads: 193