On generic complexity of the subset sum problem for semigroups of integer matrices | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2020. № 50. DOI: 10.17223/20710410/50/9

Generic-case approach to algorithmic problems was suggested by Miasnikov, Kapovich, Schupp, and Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. The subset sum problem is a classic combinatorial problem that has been studied for many decades. Myasnikov, Nikolaev and Ushakov in 2015 introduced an analogue of this problem for arbitrary groups (semigroups). For some classes of groups, such as hyperbolic and nilpotent groups, this problem is solvable in polynomial time. For others, for example, Baumslag - Solitaire groups, group of second order integer unimodular matrices SL2(Z), this problem is NP-complete. From the works of Gurevich, Kai, Fuchs, Cosen, and Liu, it follows that the subset sum problem for the group SL2(Z) and for the monoid SL2 (N) is polynomially solvable for almost all inputs. In the paper, we study the generic complexity of the subset sum problem for semigroups of matrices of arbitrary order with integer non-negative elements. This problem is NP-complete, and therefore for it, provided P = NP, there is no polynomial algorithm that solves it for all inputs. We present a polynomial generic algorithm based on the dynamic programming and prove that this problem is generically solvable in polynomial time.
Download file
Counter downloads: 63
  • Title On generic complexity of the subset sum problem for semigroups of integer matrices
  • Headline On generic complexity of the subset sum problem for semigroups of integer matrices
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 50
  • Date:
  • DOI 10.17223/20710410/50/9
Keywords
generic complexity, the subset sum problem, integer matrix semigroups
Authors
References
Karp R. Reducibility among combinatorial problems // R. E. Miller and J. W. Thather (eds). Complexity of Computer Computations. IBM Research Symposia Ser. 1972. P.85-103.
Heilman M. and Merkle R. Hiding information and signatures in trapdoor knapsacks // IEEE Trans. Inform. Theory. 1978. V. 24. No. 5. P. 525-530.
Chor B. and Rivest R. A knapsack-type public key cryptosystem based on arithmetic in finite fields // IEEE Trans. Inform. Theory. 1988. V. 34. No. 5. P.901-909.
Кузюрин Н. Н. Полиномиальный в среднем алгоритм в целочисленном линейном программировании // Сибирский журнал исследования операций. 1994. Т. 1. №3. С. 38-48.
Miasnikov A., Nikolaev A., and Ushakov A. Knapsack problems in groups // Math. Comput. 2015. V. 84. P.987-1016.
Blass A. and Gurevich Yu. Matrix transformation is complete for the average case // SIAM J. Computing. 1995. V. 24. No. 1. P.24-39.
Gurevich Yu. Matrix decomposition problem is complete for the average case // Proc. 31st Ann. Symp. Foundations of Computer Science. 1990. P.802-811.
Cai J., Fuchs W., Kozen D., and Liu Z. Efficient average-case algorithms for the modular group // Proc. 35th Ann. Symp. Foundations of Computer Science. 1994. P. 143-152.
Cai J. and Liu Z. The bounded membership problem of the monoid SL2(N) // Math. Systems Theory. 1996. V. 29. P. 573-587.
Kapovich I., Miasnikov A., Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks // J. Algebra. 2003. V. 264. No. 2. P. 665-694.
Каргаполов М. И., Мерзляков Ю. И. Основы теории групп. М.: Наука, 1982. 288 с.
Zsigmondy K. Zur Theorie der Potenzreste // Monatshefte fur Math. u. Phys. 1882. V. 3. P. 265-284
 On generic complexity of the subset sum problem for semigroups of integer matrices | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2020. № 50. DOI: 10.17223/20710410/50/9
On generic complexity of the subset sum problem for semigroups of integer matrices | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2020. № 50. DOI: 10.17223/20710410/50/9
Download full-text version
Counter downloads: 192