Pyramid scheme for constructing biorthogonal wavelet codes over finite fields | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2021. № 51. DOI: 10.17223/20710410/51/5

The existence of a biorthogonal decomposition of the space V of dimension n over the field GF(q) is constructively proved, namely, two representations of it are obtained as direct sums of subspaces V = W0⊕W1⊕.. .⊕WJ⊕VJ и V = Wо ⊕ Wi ⊕ ... ⊕ WJ ⊕ VJ, such that at the j-th level of the decomposition, for (0 < j ≤ J), Vj-1 = Vj ⊕ Wj, Vj-1 = Vj ⊕ Wj, the subspace Vj is orthogonal to Wj, and the subspace Wj is orthogonal to Vj. The partition of the space at the j-th level is made with the help of pairs of level filters (hj,gj) and (hj,gj), for the construction of which the corresponding algorithms have been developed and theoretically proved. A new family of biorthogonal wavelet codes is built on the basis of the multilevel wavelet decomposition scheme with coding rate 2-L, where L is the number of used decomposition levels, and examples of such codes are given.
Download file
Counter downloads: 141
  • Title Pyramid scheme for constructing biorthogonal wavelet codes over finite fields
  • Headline Pyramid scheme for constructing biorthogonal wavelet codes over finite fields
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 51
  • Date:
  • DOI 10.17223/20710410/51/5
Keywords
discrete biorthogonal wavelet transforms, multiresolutions, wavelet codes
Authors
References
Mallat S. Wavelet Tour of Signal Processing. 2nd ed. Boston: Academic Press, 1999. 799 p.
Воробьев В. И., Грибунин В. Г. Теория и практика вейвлет-преобразования. СПб.: ВУС, 1999. 206 с.
Caire G., Grossman R. L., and Poor H. V. Wavelet transforms associated with finite cyclic groups // IEEE Trans. Inform. Theory. 1993. V. 39. No. 4. P.1157-1166.
Fekri F., Mersereau R. M., and Schafer R. W. Theory of wavelet transform over finite fields // Proc. IEEE Intern. Conf. Acoustics, Speech, and Signal Processing. 1999. V. 3. P. 1213-1216.
Fekri F., McLaughlin S. W., Mersereau R. M., and Schafer R. W. Double circulant self-dual codes using finite-field wavelet transforms // Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Berlin: Springer, 1999. P. 355-363.
Fekri F., McLaughlin S. W., Mersereau R. M., and Schafer R. W. Error control coding using finite-field wavelet transforms // Atlanta: Center for Signal Image Processing, 1999. P. 1-13.
Fekri F., Mersereau R. M., and Schafer R. W. Theory of paraunitary filter banks over fields of characteristic two // IEEE Trans. Inform. Theory. 2002. V. 48. No. 11. P.2964-2979.
Черников Д. В. Помехоустойчивое кодирование с использованием биортогональных наборов фильтров точного восстановления // Труды конференции «Информационные технологии и системы». Светлогорск, 2013. С. 507-512.
Мак-Вильямс Ф. Дж., Слоэн Н.Дж.А. Теория кодов, исправляющих ошибки. М.: Связь, 1974. 744c.
Черников Д. В. Помехоустойчивое кодирование с использованием биортогональных наборов фильтров // Сибирские электрон. матем. известия. 2015. Т. 12. С. 704-713.
Соловьев А. А., Черников Д. В. Биортогональные вейвлет-коды с заданным кодовым расстоянием // Дискретная математика. 2017. Т. 29. №2 С. 96-108.
Соловьев А. А., Черников Д. В. Биортогональные вейвлет-коды в полях характеристики два // Челяб. физ.-мат. журн. 2017. Т. 2. №1. С. 66-79.
Doubechies I. and Sweldens W. Factoring wavelet transforms into lifting steps // J. Fourier Analysis Appl. 1998. V. 4. No. 3. P. 247-269.
 Pyramid scheme for constructing biorthogonal wavelet codes over finite fields | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2021. № 51. DOI: 10.17223/20710410/51/5
Pyramid scheme for constructing biorthogonal wavelet codes over finite fields | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2021. № 51. DOI: 10.17223/20710410/51/5
Download full-text version
Counter downloads: 290