We study probabilistic models of block cipher systems in which random round keys are independent and equally distributed. They are called Markov ciphers if the sequence of round differences forms a simple homogeneous Markov chain. The elements and rows of the matrices P R of the transition probabilities of differences in R rounds, which are the most distant from equiprobable values for all sufficiently large R The spectral criterion proposed in 2016 by the author for testing hypotheses about random substitutions was applied to construct and calculate discrimination attacks in the model of independent two-block texts and in the new model of independent complete codebooks.
Download file
Counter downloads: 34
- Title Spectral probabilistic and statistical analysis of Markov ciphers
- Headline Spectral probabilistic and statistical analysis of Markov ciphers
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 53
- Date:
- DOI 10.17223/20710410/53/2
Keywords
independent full codebooks, second dominant eigenvalue, transition probabilities of differentials, matrix spectrum, distinguishing attack, Markov block ciphersAuthors
References
Xue W, Lin T., Shun X., et al. On the estimation of the second largest eigenvalue of Markov ciphers // Security Comm. Networks. 2016. V. 9. P.2093-2099.
Vaudenay S. On the security of CS-cipher // LNCS. 1999. V. 1636. P. 260-274.
Боровков А. А. Теория вероятностей. М.: Эдиториал УРСС, 1999. 472 с.
Lai X. On the Design and Security of Block Ciphers: Dissertation for the degree of Doctor of Technical Sciences. Swiss Federal Institute of Technology, Zurich, 1992. 118 p.
Albrecht M. and Leander G. An all-in-one approach to differential cryptanalysis for small block ciphers // LNCS. 2013. V. 7707. P. 1-15.
Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир, 1989. 655 с.
Денисов О. В. Атаки различения на блочные шифрсистемы по разностям двублочных текстов // Прикладная дискретная математика. 2020. №48. С. 43-62.
Ланкастер П. Теория матриц. М.: Наука, 1978. 280 с.
Альпин Ю. А., Альпина В. С. Теорема Перрона - Фробениуса: доказательство с помощью цепей Маркова // Зап. научн. сем. ПОМИ. 2008. Т. 359. С. 5-16.
Денисов О. В. Спектральный критерий для проверки гипотез о случайных подстановках // Матем. вопр. криптогр. 2016. Т. 7. Вып.3. С. 19-28.
Денисов О. В. Критерии марковости алгоритмов блочного шифрования // Прикладная дискретная математика. 2018. №41. C. 28-37.
Погорелое Б. А., Пудовкина М. А. Разбиения на биграммах и марковость алгоритмов блочного шифрования // Матем. вопр. криптогр. 2017. Т. 8. Вып. 1. С. 107-142.
Lai X., Massey J., and Murphy S. Markov ciphers and differential cryptanalysis // LNCS. 1991. V. 547. P.17-38.

Spectral probabilistic and statistical analysis of Markov ciphers | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2021. № 53. DOI: 10.17223/20710410/53/2
Download full-text version
Counter downloads: 108