Image stegoanalysis using deep neural networks and heteroassociative integral transformations | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 55. DOI: 10.17223/20710410/55/3

The problem of steganalysis of digital images is considered. The proposed approach is based on the use of deep convolutional neural networks with a relatively simple architecture, distinguished by the use of additional layers of special processing. These networks are trained and used for steganalysis of small fragments of the original large images. For the analysis of full sized images, it is proposed to carry out secondary post-processing, which involves combining the obtained classification results in blocks as a sequence of binary features according to the scheme of a naive Bayesian classifier. We propose to use integral heteroassociative transformations that provide the selection of the estimated and stochastic (masking) components on the processed image fragment based on the forecast model of one part of the fragment in relation to another to identify violations of the structural and statistical image properties after message embedding. Such transformations are included in the architecture of trained neural networks as an additional layer. Alternative versions of deep neural network architectures (with and without an integral layer of heteroassociative transformation) are considered. The PPG-LIRMM-COLOR images base was used to create data sets. Experiments have been carried out for several well-known stego algorithms (including the classic block and block-spectral algorithms of Kutter, Koha - Zhao, modern algorithms EMD, MBEP and algorithms for adaptive spatial steganography WOW and S-UNIWARD) and for the stego algorithms based on the use of heteroassociative compression transformations. It is shown that the accuracy of steganalysis obtained when implementing the proposed information processing schemes for large images with relatively low computational costs is comparable to the results obtained by other authors, and in some cases even exceeds them.
Download file
Counter downloads: 50
  • Title Image stegoanalysis using deep neural networks and heteroassociative integral transformations
  • Headline Image stegoanalysis using deep neural networks and heteroassociative integral transformations
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 55
  • Date:
  • DOI 10.17223/20710410/55/3
Keywords
steganography, steganalysis, machine learning, deep neural networks
Authors
References
Шелухин О. И. Стеганография. Алгоритмы и программная реализация. М.: Горячая линия - Телеком, 2017. 592 c.
Czaplewski B. Current trends in the field of steganalysis and guidelines for constructions of new steganalysis schemes // Przeglad Telekomunikacyjny + Wiadomosci Telekomunikacyjne. 2017. No. 10. P.1121-1125.
Lyu S. and Farid H. Detecting hidden messages using higher-order statistics and support vector machines // Intern. Workshop Inform. Hiding. Berlin; Heidelberg: Springer, 2002. P. 340-354. https://farid.berkeley.edu/downloads/publications/ih02.pdf.
Lyu S. and Farid H. Steganalysis using color wavelet statistics and one-class support vector machines // Proc. SPIE. California, USA, 2004. P.35-45. https: //www.researchgate.net/publication/221011180\\_Steganalysis\\_using\\_color\\_wavelet\\_statistics\\_and\\_one-class\\_support\\_vector\\_machines.
Pevny T., Bas P., and Fridrich J. Steganalysis by subtractive pixel adjacency matrix // IEEE Trans. Inform. Forensics Security. 2010. V. 5. No.2. P.215-224.
Fridrich J. Rich models for steganalysis of digital images // IEEE Trans. Inform. Forensics Security. 2012. V. 7. No. 3. P. 868-882.
Holub V. and Fridrich J. Random projections of residuals for digital image steganalysis // IEEE Trans. Inform. Forensics Security. 2013. V. 8. No. 12. P. 1996-2006.
Bas P., Filler T., and Pevny T. Break our steganographic system the ins and outs of organizing BOSS // LNCS. 2011. V.6958. P.59-70.
PPG-LIRMM-COLOR base https://www.lirmm.fr/~chaumont/PPG-LIRMM-COLOR.html
Pevny T., Filler T., and Bas P. Using high-dimensional image models to perform highly undetectable steganography // LNCS. 2010. V. 6387. P.161-177.
Holub V. and Fridrich J. Digital image steganography using universal distortion // Proc. 1st ACM Workshop IHMMSec. ACM, 2013. P. 59-68.
Holub V. and Fridrich J. Designing steganographic distortion using directional filters // Proc. 4th IEEE Intern. Workshop WIFS. 2012. P.234-239.
Kodovsky J., Fridrich J., and Holub V. Ensemble classifiers for steganalysis of digital media // IEEE Trans. Inform. Forensics Security. 2010. V. 7. No. 2. P.434-444.
Монарев В. А., Пестунов А. И. Эффективное обнаружение стеганографически скрытой информации посредством интегрального классификатора на основе сжатия данных // Прикладная дискретная математика. 2018. №40. С. 59-71.
Tabares-Soto R., Ramos-Pollan R., and Isaza G Deep learning applied to steganalysis of digital images: A systematic review // IEEE Access. 2019. V. 7. P.68970-68990.
Qian Y., Dong J., Wang W, and Tan T. Deep learning for steganalysis via convolutional neural networks // Proc.Int. Symp. Electron. Imag. 2015. V. 9409. Art. no. 94090J.
Yedroudj M., Comby F., and Chaumont M Yedrouj-Net: An efficient CNN for spatial steganalysis // Proc. IEEE Intern. Conf. Acoustics, Speech Signal Processing. 2018. P. 2092-2096.
Zhang R., Zhu F., Liu J., and Liu G Efficient Feature Learning and Multisizeimage Steganalysis Based on CNN. 2018. https://arxiv.org/pdf/1807.11428.pdf
Полунин А. А., Яндашевская Э. А. Использование аппарата сверточных нейронных сетей для стегоанализа цифровых изображений // Труды ИСП РАН. 2020. Т. 32. №4. С. 155-164.
Сирота А. А., Дрюченко М. А. Обобщенные алгоритмы сжатия изображений на фрагментах произвольной формы и их реализация с использованием искусственных нейронных сетей // Компьютерная оптика. 2015. №5. С. 751-761.
Dryuchenko M. A. and Sirota A. A.Interpolation and masking effects of heteroassociative compressive transformations //J. Phys.: Conf. Ser. 2020. V. 1902. P.1-10. https://iopscience.iop.org/article/10.1088/1742-6596/1902/1/012058/pdf.
Дрюченко М. А., Сирота А. А. Гетероассоциативные сжимающие преобразования цифровых изображений и их интерполирующие и маскирующие свойства // Сб. трудов Междунар. науч.-техн. конф. «Актуальные проблемы прикладной математики, информатики и механики». Воронеж, 07-09 декабря 2020. С. 312-322.
Сирота А. А., Дрюченко М. А., Митрофанова Е. Ю. Метод создания цифровых водяных знаков на основе гетероассоциативных сжимающих преобразований изображений и его реализация с использованием искусственных нейронных сетей // Компьютерная оптика. 2018. №3. С. 483-494.
Сирота А. А., Дрюченко М. А., Митрофанова Е. Ю. Нейросетевые функциональные модели и алгоритмы преобразования информации для создания цифровых водяных знаков // Изв. вузов. Радиоэлектроника. 2015. №1. С. 3-16.
Сирота А. А., Дрюченко М. А., Иванков А. Ю. Стегоанализ цифровых изображений с использованием методов поверхностного и глубокого машинного обучения: известные подходы и новые решения // Вестник Воронежского гос. ун-та. Сер. Системный анализ и информационные технологии. 2021. №1. C. 33-53.
Kutter M., Jordan F., and Bossen F Digital signature of color images using amplitude modulation // Proc. SPIE. 1997. P. 518-526. Стегоанализ цифровых изображений с использованием глубоких нейронных сетей 57
Zhao J. and Koch E Embedding robust labels into images for copyright protection // Proc.Intern. Congress Intellectual Property Rights for Specialized Information, Knowledge and New Technologies. Vienna, August 1995. P.242-251.
Zhang X. P. and Wang S. Z Efficient steganographic embedding by exploiting modification direction // IEEE Commun. Let. 2006. V. 10. No. 11. P. 781-783.
Paul G., Davidson I., Mukherjee I., and Ravi S. S. Keyless dynamic optimal multi-bit image steganography using energetic pixels // Multimedia Tools Appl. 2017. V. 76. P.7445-7471.
Digital Data Embedding Laboratory Department of Electrical and Computer Engineering SUNY Binghamton. http://dde.binghamton.edu/download/stego\\_algorithms/
 Image stegoanalysis using deep neural networks and heteroassociative integral transformations | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 55. DOI: 10.17223/20710410/55/3
Image stegoanalysis using deep neural networks and heteroassociative integral transformations | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 55. DOI: 10.17223/20710410/55/3
Download full-text version
Counter downloads: 155