The membership problem for finitely generated subgroups (subsemigroups) of groups (semigroups) is a classical algorithmic problem, actively studied for many decades. Already for sufficiently simple groups and semigroups, this problem becomes undecidable. For example, K. A. Mikhailova in 1966 proved the undecidability of the membership problem for finitely generated subgroups (hence and for subsemigroups) of a direct product F2×F2 of two free groups of rank 2. Since, by the well-known Sanov theorem, the group F2 has an exact representation by integer matrices of order 2, the group F2×F2 is a subgroup of the group GL4(ℤ) of integer matrices of order 4. It easily implies the undecidability of this problem for the group GLk(ℤ) for k ≥ 4. Undecidability of the membership problem for finitely generated subsemigroups of semigroups of integer matrices of order ≥ 3 follows from Paterson’s result proved in 1970. In this paper, we propose a strongly generic algorithm deciding the membership problem for semigroups of integer matrices of arbitrary order for inputs from a subset whose sequence of frequencies exponentially fast converges to 1 with increasing size.
Download file
Counter downloads: 57
- Title Generic complexity of the membership problem for semigroups of integer matrices
- Headline Generic complexity of the membership problem for semigroups of integer matrices
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 55
- Date:
- DOI 10.17223/20710410/55/7
Keywords
generic complexity, membership problem, semigroups of integer matricesAuthors
References
Михайлова К. А. Проблема вхождения для прямых произведений групп // Математический сборник. 1966. Т. 112. №2. С.241-251.
Paterson M. S. Unsolvability in 3 x 3 matrices // Studies Appl. Math. 1970. V. 49. No. 1. P. 105-107.
Halava V. and Harju T. Mortality in matrix semigroups // Amer. Math. Monthly. 2001. V. 108. No. 7. P. 649-653.
Kapovich I., Miasnikov A, Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks //j. Algebra. 2003. V. 264. No. 2. P. 665-694.
Babai L., Erdos P, and Selkow S. Random graph isomorphism // SIAM J.Computing. 1980. V. 9. No. 3. P. 628-635.
Гимади Э. X., Глебов Н. И., Перепелица В. А. Алгоритмы с оценками для задач дискретной оптимизации // Проблемы кибернетики. 1975. Т. 31. С. 35-42.
Селиверстов А.В. Двоичные решения для больших систем линейных уравнений // Прикладная дискретная математика. 2021. №52. C.5-15.
Gurevich Y. Average case completeness //j.Computer System Sci. 1991. V.42. P.346-398.
Levin L. Average case complete problems // SIAM J.Computing. 1987. V. 15. P. 285-286.
Рыбалов А. Генерический алгоритм для проблемы вхождения в полугруппах целочисленных матриц // Вестник Омского университета. 2020. Т. 25. №3. С. 8-12.
Hirschfeldt D. Some questions in computable mathematics // Computability and Complexity. 2017. P.22-55. О генерической сложности проблемы вхождения для полугрупп целочисленных матриц 101
Meyer A. An open problem on creative sets // Recursive Function Theory Newsletter. 1973. V. 4. P. 15-16.
Jockusch C. and Schupp P. Generic computability, Turing degrees, and asymptotic density //j. London Math. Soc. 2012. V. 85. No. 2. P.472-490.
Schwartz J. Fast probabilistic algorithms for verification of polynomial identities //j. ACM. 1980. V. 27. No. 4. P.701-717.
Zippel R. Probabilistic algorithms for sparse polynomials // Symbolic Algebraic Computation. 1979. V. 72. P.216-226.
DeMillo R. and Lipton R. A probabilistic remark on algebraic program testing // Inform. Processing Lett. 1978. V. 7. P. 193-195.

Generic complexity of the membership problem for semigroups of integer matrices | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 55. DOI: 10.17223/20710410/55/7
Download full-text version
Counter downloads: 155