On the structural security of a McEliece-type cryptosystem based on the sum of tensor products of binary Reed - Muller codes | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 57. DOI: 10.17223/20710410/57/2

The current task of cryptography is the development of cryptosystems resistant to attacks using quantum computing. One of the promising encryption schemes is the McEliece system based on Goppa codes. However, this system has a number of disadvantages due to the structure of Goppa codes, which makes it relevant to search for other codes for the McEliece scheme. Important requirements for these codes are the presence of a fast decoder and ensuring the resistance of the corresponding cryptosystem to known attacks, including attacks with the Schur - Hadamard product. Many attempts to replace Goppa codes have failed because the corresponding cryptosystems have proven to be unstable against structural attacks. In this paper, it is proposed to use the D-construction (D-code) on binary Reed - Muller codes in the McEliece cryptosystem. This construction is a sum of a special kind of tensor products of binary Reed - Muller codes. There is a fast decoding algorithm for it. To analyze the security of the McEliece scheme on D-codes, we have constructed a structural attack that uses the Schur - Hadamard product of a D-code. To select the parameters that ensure the resistance of the cryptosystem to the constructed attack, we investigate the decomposition of the degree of the D-code into the direct sum of Reed - Muller codes and conclude about the set of strong keys of the cryptosystem.
Download file
Counter downloads: 23
  • Title On the structural security of a McEliece-type cryptosystem based on the sum of tensor products of binary Reed - Muller codes
  • Headline On the structural security of a McEliece-type cryptosystem based on the sum of tensor products of binary Reed - Muller codes
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 57
  • Date:
  • DOI 10.17223/20710410/57/2
Keywords
McEliece-type cryptosystem, structural security, binary Reed-Muller codes, sum of tensor products, Schur-Hadamard product
Authors
References
http://csrc.nist.gov/projects/post-quantum-cryptography - National Institute of Standards and Technology (NIST). Post-Quantum Cryptography, 2021
McEliece R. J. A public-key cryptosystem based on algebraic coding theory // DSN Progress Report. 1978. P.42-44.
https://classic.mceliece.org/nist/mceliece-20201010.pdf. 2020.
Sidel’nikov V.M. Open coding based on Reed - Muller binary codes // Discr. Math. Appl. 1994. V. 4. No. 3. P.191-207.
Niederreiter H. Knapsack-type cryptosystems and algebraic coding theory // Problems Control Inform. Theory. 1986. V. 15. No. 2. P. 159-166.
Berger T. and Loidreau P. How to mask the structure of codes for a cryptographic use // Des. Codes Cryptogr. 2005. V.35. No. 1. P.63-79.
Janwa H. and Moreno O. McEliece public cryptosystem using algebraic-geometric codes // Des. Codes Cryptogr. 1996. V. 8. P. 293-307.
Couvreur A., Marquez-Corbella I., and Pellikaan R. Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes // IEEE Trans. Inform. Theory. 2017. V. 8. No. 63. P. 5404-5418.
Chizhov I. V. and Borodin M. A. Effective attack on the McEliece cryptosystem based on Reed - Muller codes // Discr. Math. Appl. 2014. V.24. No. 5. P.273-280.
Wieschebrink C. Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes // LNCS. 2010. V.6061. P.61-72.
Sidel’nikov V.M. and Shestakov S. O. On an encoding system constructed on the basis of generalized Reed - Solomon codes // Discr. Math. Appl. 1992. V.4. No.2. P.439-444.
Деундяк В. М., Дружинина М. А., Косолапов Ю. В. Модификация криптоаналитического алгоритма Сидельникова - Шестакова для обобщенных кодов Рида - Соломона и ее программная реализация // Изв. вузов. Северо-Кавказский регион. Сер.: Технические науки. 2006. №4. С. 15-19.
Minder L. and Shokrollahi A. Cryptanalysis of the Sidelnikov cryptosystem // LNCS. 2007. V. 4515. P. 347-360.
Бородин М. А., Чижов И. В. Классификация произведений Адамара подкодов коразмерности 1 кодов Рида - Маллера // Дискретная математика. 2020. Т. 32. №1. С. 115-134.
Wieschebrink C. Two NP-complete problems in coding theory with an application in code based cryptography // IEEE Intern. Symp. Inform. Theory. 2006. P. 1733-1737.
Couvreur A., Gaborit P., Gauthier-Umana V., et al. Distinguisher-based attacks on public-key cryptosystems using Reed - Solomon codes // Des. Codes Cryptogr. 2014. V. 73. P. 641-666.
Otmani A. and Kalachi H. Square code attack on a modified Sidelnikov cryptosystem // LNCS. 2015. V. 9084. P.173-183.
Couvreur A. and Lequesne M. On the security of subspace subcodes of Reed - Solomon codes for public key encryption // IEEE Trans. Inform. Theory. 2022. V. 68. No. 1. P.632-648.
Morelos-Zaragoza R. H. The Art of Error Correcting Coding. John Wiley & Sons, Ltd. 2006. 263 p.
Деундяк В. М., Косолапов Ю. В. Криптосистема на индуцированных групповых кодах // Модел. и анализ информ. систем. 2016. Т. 23. №2. С. 137-152.
Деундяк В. М., Косолапов Ю. В. Анализ стойкости некоторых кодовых криптосистем, основанный на разложении кодов в прямую сумму // Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование. 2019. Т. 12. №3. С. 89-101.
Egorova E., Kabatiansky G., Krouk E., and Tavernier C. A new code-based public-key cryptosystem resistant to quantum computer attacks //j. Phys. Conf. Ser. 2019. V. 1163. P. 1-5.
Deundyak V. M., Kosolapov Yu. V., and Maystrenko I. A. On the decipherment of Sidel’nikov-type cryptosystems // LNCS. 2020. V. 12087. P.20-40.
Kasami T. and Lin S. On the construction of a class of majority-logic decodable codes // IEEE Trans. Inform. Theory. 1971. V. IT-17. No. 5. P.600-610.
Deundyak V.M., Kosolapov Yu. V., and Lelyuk E. A. Decoding the tensor product of MLD codes and applications for code cryptosystems // Automatic Control Comput. Sci. 2018. V. 52. No. 7. P. 647-657.
Deundyak V. M. and Lelyuk E. A. A graph-theoretical method for decoding some group MLD-codes //j. Appl. Industr. Math. 2020. V. 14. No.2. P.265-280.
Randriambololona H. On products and powers of linear codes under componentwise multiplication // Algorithmic Arithmetic Geometry Coding Theory. 2015. V. 637. P.3-78.
Deundyak V. M. and Kosolapov Yu. V. On the strength of asymmetric code cryptosystems based on the merging of generating matrices of linear codes // XVI Intern. Symp. Prob. of Redundancy in Information and Control Systems.Russia, 2019. P. 143-148.
Деундяк В. М., Косолапов Ю. В. О некоторых свойствах произведения Шура - Адамара для линейных кодов и их приложениях // Прикладная дискретная математика. 2020. №50. С. 72-86.
Сидельников В. М. Теория кодирования. М.: Физматлит, 2008.
Grassl M. and Rotteler M. Quantum block and convolutional codes from self-orthogonal product codes // Proc. IEEE Int. Symp. Inf. Theory. 2005. P. 1018-1022.
Henderson H. V. and Searle S. R. The vec-permutation matrix, the vec operator and Kronecker products: A review // Linear and Multilinear Algebra. 1981. No. 9. P.271-288.
 On the structural security of a McEliece-type cryptosystem based on the sum of tensor products of binary Reed - Muller codes | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 57. DOI: 10.17223/20710410/57/2
On the structural security of a McEliece-type cryptosystem based on the sum of tensor products of binary Reed - Muller codes | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 57. DOI: 10.17223/20710410/57/2
Download full-text version
Counter downloads: 131