Generic-case approach to algorithmic problems studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic complexity of the bounded problem of graphs clustering. In this problem the structure of objects relations is presented as a graph: vertices correspond to objects, and edges connect similar objects. It is required to divide the set of objects into bounded disjoint groups (clusters) to minimize the number of connections between clusters and the number of missing links within clusters. We have constructed a subproblem of this problem, for which there is no polynomial generic algorithm provided P ≠ NP and P = BPP. To prove the theorem, we use the method of generic amplification, which allows to construct generically hard problems from the problems hard in the classical sense. The main component of this method is the cloning technique, which merges the inputs of a problem together into sufficiently large sets of equivalent inputs. Equivalence is understood in the sense that the problem for them is solved in a similar way.
Download file
Counter downloads: 53
- Title The generic complexity of the bounded problem of graphs clustering
- Headline The generic complexity of the bounded problem of graphs clustering
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 57
- Date:
- DOI 10.17223/20710410/57/6
Keywords
generic complexity, graph clusteringAuthors
References
Krivanek M. and Moravek J. NP-hard problems in hierarchical-tree clustering // Acta Informatica. 1986. V. 23. P.311-323.
Bansal N., Blum A., and Chawla S. Correlation clustering // Machine Learning. 2004. V. 56. P. 89-113.
Shamir R., Sharan R., and Tsur D. Cluster graph modification problems // Discrete Appl. Math. 2004. V. 144. No. 1-2. P. 173-182.
Агеев А. А., Ильев В. П., Кононов А. В., Талевнин А. С. Вычислительная сложность задачи аппроксимации графов // Дискретный анализ и исследование операций. Сер. 1. 2006. Т. 13. №1. С. 3-11.
Ильев В. П., Ильева С.Д. О задачах кластеризации графов // Вестник Омского университета. 2016. №2. C. 16-18.
Ильев А. В., Ильев В. П. Об одной задаче кластеризации графа с частичным обучением // Прикладная дискретная математика. 2018. №42. С. 66-75.
Талевнин А. С. О сложности задачи аппроксимации графов // Вестник Омского университета. 2004. № 4. C. 22-24.
Impagliazzo R. and Wigderson A. P = BPP unless E has subexponential circuits: Derandomizing the XOR Lemma // Proc. 29th STOC. El Paso: ACM, 1997. P.220-229.
Kapovich I., Miasnikov A, Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks //j. Algebra. 2003. V. 264. No. 2. P. 665-694.
Гимади Э. X., Глебов Н. И., Перепелица В. А. Алгоритмы с оценками для задач дискретной оптимизации // Проблемы кибернетики. 1975. Т. 31. С. 35-42.
Myasnikov A. G. and Rybalov A.N. Generic complexity of undecidable problems //j. Symbolic Logic. 2008. V. 73. No. 2. P.656-673.
Rybalov A. N. On the strongly generic undecidability of the Halting Problem // Theor.Comput. Sci. 2007. V.377. P.268-270.
Rybalov A. N. Generic complexity of Presburger arithmetic // Theory Comput. Systems. 2010. V. 46. No. 1. P.2-8.
Rybalov A. N. Generic complexity of the Diophantine problem // Groups Complexity Cryptology. 2013. V. 5. No. 1. P. 25-30.
Rybalov A. N. Generic hardness of the Boolean satisfiability problem // Groups Complexity Cryptology. 2017. V. 9. No. 2. P.151-154.
Рыбалов А. Н. О генерической сложности проблемы кластеризации графов // Прикладная дискретная математика. 2019. №46. С. 72-77.
Рыболов А. Н. О генерической сложности проблемы распознавания гамильтоновых путей // Прикладная дискретная математика. 2021. №53. С. 120-126.

The generic complexity of the bounded problem of graphs clustering | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 57. DOI: 10.17223/20710410/57/6
Download full-text version
Counter downloads: 122