Analysis of minimal distance of AG-code associated with maximal curve of genus three | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 58. DOI: 10.17223/20710410/58/1

A class of algebro-geometric codes associated with a maximal curve of the third kind is considered. Using the apparatus of functional fields, the type and degree of divisors involved in the construction of the code are established, under which the code is or is not an MDS code.
Download file
Counter downloads: 76
  • Title Analysis of minimal distance of AG-code associated with maximal curve of genus three
  • Headline Analysis of minimal distance of AG-code associated with maximal curve of genus three
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 58
  • Date:
  • DOI 10.17223/20710410/58/1
Keywords
algebraic geometry code, minimal distance, mds-code, maximal curves, function field, divisor
Authors
References
Goppa V.D. Geometry and Codes. Kluwer Academic Publishers, 1988.
Stichtenoth H. Algebraic Function Fields and Codes. Springer Verlag, 1991.
Алексеенко Е.С. Явные конструкции оптимальных кривых рода три: дис.. канд. физ.-мат. наук. М., 2016. http://iitp.ru/upload/content/1203/AES_disser.pdf.
Stichtenoth H. Self dual Goppa codes //j. Pure Appl. Algebra. 1988. V. 55. P. 199-211.
 Analysis of minimal distance of AG-code associated with maximal curve of genus three | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 58. DOI: 10.17223/20710410/58/1
Analysis of minimal distance of AG-code associated with maximal curve of genus three | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 58. DOI: 10.17223/20710410/58/1
Download full-text version
Counter downloads: 88