About uniqueness of the minimal 1-edge extension of hypercube Q4 | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 58. DOI: 10.17223/20710410/58/8

One of the important properties of reliable computing systems is their fault tolerance. To study fault tolerance, you can use the apparatus of graph theory. Minimal edge extensions of a graph are considered, which are a model for studying the failure of links in a computing system. A graph G* = (V*,α*) with n vertices is called a minimal k-edge extension of an n-vertex graph G = (V, α) if the graph G is embedded in every graph obtained from G* by deleting any of its k edges and has the minimum possible number of edges. The hypercube Qn is a regular 2n-vertex graph of order n, which is the Cartesian product of n complete 2-vertex graphs K2. The hypercube is a common topology for building computing systems. Previously, a family of graphs Q*n was described, whose representatives for n>1 are minimal edge 1-extensions of the corresponding hypercubes. In this paper, we obtain an analytical proof of the uniqueness of minimal edge 1-extensions of hypercubes for n≤4 and establish a general property of an arbitrary minimal edge 1-extension of a hypercube Qn for n>2: it does not contain edges connecting vertices, the distance between which in the hypercube is equal to 2.
Download file
Counter downloads: 19
  • Title About uniqueness of the minimal 1-edge extension of hypercube Q4
  • Headline About uniqueness of the minimal 1-edge extension of hypercube Q4
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 58
  • Date:
  • DOI 10.17223/20710410/58/8
Keywords
graph, hypercube, edge fault tolerance, minimal 1-edge extension
Authors
References
Padua D. A. Encyclopedia of Parallel Computing. N.Y.: Springer, 2011.
Абросимов М. Б. Графовые модели отказоустойчивости. Саратов: Изд-во Сарат. ун-та, 2012. 192с.
Hayes J. P. A graph model for fault-tolerant computing system // IEEE Trans.Comput. 1976. V.C25. No. 9. P.875-884.
Harary F. and Hayes J. P. Node fault tolerance in graphs // Networks. 1996. V. 27. P. 19-23.
Harary F. and Hayes J. P. Edge fault tolerance in graphs // Networks. 1993. V. 23. P. 135-142.
Лобов А. А., Абросимов М. Б. О вершинном 1-расширении гиперкуба // Компьютерные науки и информационные технологии: Материалы Междунар. науч. конф. Саратов: Из-дат. центр «Наука», 2018. С. 249-251.
Zhang Y., Zhao S., and Meng J. Edge fault tolerance of graphs with respect to A2-optimal property // Theor.Comput. Sci. 2019. V. 783. P. 95-104.
Liu H. and Cheng D. Structure fault tolerance of balanced hypercubes // Theor.Comput. Sci. 2020. V. 845. P. 198-207.
Богомолов А. М., Салий В. Н. Алгебраические основы теории дискретных систем. М.: Наука, 1997. 368 с.
Харари Ф. Теория графов. М.: Мир, 1973. 296 с.
Harary F., Hayes J.P., and Wu H.-J. A survey of the theory of hypercube graphs // Computers & Math. with Appl. 1988. V. 15. Ed. 4. P.277-289.
Абросимов М. Б. О сложности некоторых задач, связанных с расширениями графов // Матем. заметки. 2010. №5(88). С. 643-650.
Абросимов М. Б., Камил И. А. К., Лобов А. А. Построение всех неизоморфных минимальных вершинных расширений графа методом канонических представителей // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2019. Т. 19. Вып. 4. С.479-486.
Абросимов М. Б., Судани Х. Х. К., Лобов А. А. Построение минимальных рёберных расширений графа без проверки на изоморфизм // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2020. Т. 20. Вып. 1. С. 105-115.
 About uniqueness of the minimal 1-edge extension of hypercube Q<sub>4</sub> | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 58. DOI: 10.17223/20710410/58/8
About uniqueness of the minimal 1-edge extension of hypercube Q4 | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 58. DOI: 10.17223/20710410/58/8
Download full-text version
Counter downloads: 89