Generic-case approach to algorithmic problems was suggested by A. Miasnikov, V. Kapovich, P. Schupp, and V. Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic complexity of the graph triangulation problem. This problem is as follows. Given a finite simple graph with 3n vertices, determine whether the vertices of the graph can be divided into n three-element sets, each of which contains vertices connected by edges of the original graph (that is, they are triangles). NP-completeness of this problem was proved by Shaffer in 1974 and is mentioned in the classic monograph by M. Garey and D. Johnson. We prove that under the conditions P ≠ NP and P = BPP there is no polynomial strongly generic algorithm for this problem. A strongly generic algorithm solves a problem not on the whole set of inputs, but on a subset whose frequency sequence converges exponentially to 1 with increasing size. To prove the theorem, we use the method of generic amplification, which allows one to construct generically hard problems from the problems that are hard in the classical sense. The main component of this method is the cloning technique, which combines the inputs of a problem together into sufficiently large sets of equivalent inputs. Equivalence is understood in the sense that the problem for them is solved in a similar way.
Download file
Counter downloads: 20
- Title The generic complexity of the graph triangulation problem
- Headline The generic complexity of the graph triangulation problem
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 58
- Date:
- DOI 10.17223/20710410/58/10
Keywords
generic complexity, graph triangulation problemAuthors
References
Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982. 420с.
Kapovichl., Miasnikov A., Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks //j. Algebra. 2003. V. 264. No. 2. P. 665-694.
Гимади Э. X., Глебов Н. И., Перепелица В. А. Алгоритмы с оценками для задач дискретной оптимизации // Проблемы кибернетики. 1975. Т. 31. С. 35-42.
Blum M. How to prove a theorem so no one else can claim it // Proc.Intern. Congress Math., Berkeley, CA, 1986. P.1444-1451.
Myasnikov A. G. and Rybalov A. N. Generic complexity of undecidable problems //j. Symbolic Logic. 2008. V. 73. No. 2. P.656-673.
Rybalov A. N. On the strongly generic undecidability of the Halting Problem // Theor.Comput. Sci. 2007. V.377. P.268-270.
Rybalov A. N. Generic complexity of Presburger arithmetic // Theory Comput. Systems. 2010. V. 46. No. 1. P.2-8.
Rybalov A. N. Generic complexity of the Diophantine problem // Groups Complexity Cryptology. 2013. V. 5. No. 1. P. 25-30.
Rybalov A. N. Generic hardness of the Boolean satisfiability problem // Groups Complexity Cryptology. 2017. V. 9. No. 2. P.151-154.
Рыбалов А. Н. О генерической сложности проблемы кластеризации графов // Прикладная дискретная математика. 2019. №46. С. 72-77.
Рыбалов А. Н. О генерической сложности проблемы распознавания гамильтоновых путей // Прикладная дискретная математика. 2021. №53. С. 120-126.
Impagliazzo R. and Wigderson A. P = BPP unless E has subexponential circuits: Derandomizing the XOR Lemma // Proc. 29th STOC. El Paso: ACM, 1997. P.220-229.
Рыбалов А. О генерической сложности проблемы общезначимости булевых формул // Прикладная дискретная математика. 2016. №2(32). С. 119-126.

The generic complexity of the graph triangulation problem | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2022. № 58. DOI: 10.17223/20710410/58/10
Download full-text version
Counter downloads: 88