Ternary forking lemma and its application to the analysis of one code-based signature | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 59. DOI: 10.17223/20710410/59/3

The work is devoted to the generalization of the branching lemma to the case when the hash function returns a set of trits, and the application of the lemma to an alternative security proof in the SUF-CMA model of a single signature code scheme based on the Stern identification protocol.
Download file
Counter downloads: 6
  • Title Ternary forking lemma and its application to the analysis of one code-based signature
  • Headline Ternary forking lemma and its application to the analysis of one code-based signature
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 59
  • Date:
  • DOI 10.17223/20710410/59/3
Keywords
provable security, digital signature, forking lemma
Authors
References
https://github.com/Crypto-TII/syndrome_decoding_estimator- Syndrome Decoding Estimator. 2021.
Esser A. and Bellini E. Syndrome Decoding Estimator. Cryptology ePrint Archive. 2021. Paper 2021/1243.
Shoup V. Sequences of Games: a Tool for Taming Complexity in Security Proofs. Cryptology ePrint Archive. 2004. Paper 2004/332.
Fischlin M., Lehmann A., Ristenpart T., et al. Random oracles with (out) programmability // LNCS. 2010. V.6477. P.303-320.
Bellare M. and Rogaway P. Random oracles are practical: A paradigm for designing efficient protocols // Proc. 1st ACM Conf. CCS'93. 1993. P.62-73.
Berlekamp Е., McEliece R., and Van Tilborg H. On the inherent intractability of certain coding problems // IEEE Trans. Inform. Theory. 1978. V. 24. No.3. P. 384-386.'.
Katz J. and Lindell Y.Introduction to Modern Cryptography: 3d Ed. Chapman k, Hall/CRC Cryptography and Network Security Series, 2021. 628 pp.
Stern J. A new identification scheme based on syndrome decoding // LNCS. 1993. V. 773. P.13-21.
Vysotskaya V. V. and Chizhov I. V. The security of the code-based signature scheme based on the Stern identification protocol // Прикладная дискретная математика. 2022. T. 57. С. 67-90.
Bellare М. and Neven G. Multi-signatures in the plain public-key model and a general forking lemma // Proc. 13th ACM Conf. CCM'06. 2006. P.390-399.
Черемушкин А. В. Криптографические протоколы: основные свойства и уязвимости j j Прикладная дискретная математика. Приложение. 2009. №2. С. 115-150.
Damgard I. On E-protocols. Lecture Notes. University of Aarhus, Department of Computer Science, 2002.
Fiat A. and Shamir A. How to prove yourself: Practical solutions to identification and signature problems // LNCS. 1987. V. 263. P.186-194.
Pointcheval D. and Stern J. Security proofs for signature schemes // EUROCRYPT'96. LNCS. 1996. V. 1070. R 387-398.
 Ternary forking lemma and its application to the analysis of one code-based signature | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 59. DOI: 10.17223/20710410/59/3
Ternary forking lemma and its application to the analysis of one code-based signature | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 59. DOI: 10.17223/20710410/59/3
Download full-text version
Counter downloads: 534