Attractors and cyclic states in finite dynamic systems of complete graphs orientations | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 59. DOI: 10.17223/20710410/59/5

A finite dynamical system is considered, the states of which are all possible orientations of a given complete graph, and the evolution function is given as follows: the dynamic image of a digraph is a digraph obtained from the original one by reorienting all the arcs included in the sinks, there are no other differences between the original digraph and its image. The cyclic states of the system (belonging to attractors) are characterized, a table is given with the number of cyclic states and states that are not cyclic in orientation systems of complete graphs with the number of vertices from 1 to 8 inclusive. The formation of attractors of the system, their type, length is described, a table is given with the corresponding number of attractors in the orientation systems of complete graphs with the number of vertices from 1 to 8 inclusive.
Download file
Counter downloads: 4
  • Title Attractors and cyclic states in finite dynamic systems of complete graphs orientations
  • Headline Attractors and cyclic states in finite dynamic systems of complete graphs orientations
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 59
  • Date:
  • DOI 10.17223/20710410/59/5
Keywords
evolutionary function, fault-tolerance, finite dynamic system, directed graph, cybersecurity, cyclic state, complete graph, attractor, graph, information security
Authors
References
Жаркова А.В. Аттракторы в конечных динамических системах двоичных векторов, ассоциированных с ориентациями пальм // Прикладная дискретная математика. 2014. №3(25). С. 58-67.
Власова А.В. Аттракторы динамических систем, ассоциированных с циклами // Прикладная дискретная математика. 2011. №2(12). С.90-95.
Богомолов А.М., Салий В.Н. Алгебраические основы теории дискретных систем. М.: Наука, Физматлит, 1997. 368 с.
Colon-Reyes O., Laubenbacher R., and Pareigis B. Boolean monomial dynamical systems // Ann.Combinatorics. 2004. V. 8. P.425-439.
Салий В.H. Об одном классе конечных динамических систем // Вестник Томского госуниверситета. Приложение. 2005. №14. С. 23-26.
Barbosa V.С. An Atlas of Edge-Reversal Dynamics. London: Chapman k, Hall/CRC, 2001. 372 p.
 Attractors and cyclic states in finite dynamic systems of complete graphs orientations | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 59. DOI: 10.17223/20710410/59/5
Attractors and cyclic states in finite dynamic systems of complete graphs orientations | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 59. DOI: 10.17223/20710410/59/5
Download full-text version
Counter downloads: 533