A general algebraic equation is considered, and the problem is to find its solution using power series or Laurent series depending on the coefficients of the equation. A solution is obtained in the form of a Laurent series, the coefficients of which are expressed in terms of the coefficients by formulas in a “closed” form, when the number of terms in the formula does not increase with the number of the coefficient. In the applied aspect, a general algebraic equation is considered as a commutative image of the corresponding equation with non-commutative symbols, which, in turn, is interpreted in the theory of formal grammars as a polynomial grammar. It is shown that such a grammar does not generate a formal language (it does not have a solution in the form of a formal power series), since its commutative image has a solution in the form of a Laurent series containing negative degrees of variables, while division in the theory of formal grammars is not defined.
Download file
Counter downloads: 4
- Title On the solution of a general algebraic equation by power series and applications in the theory of formal grammars
- Headline On the solution of a general algebraic equation by power series and applications in the theory of formal grammars
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 60
- Date:
- DOI 10.17223/20710410/60/9
Keywords
general algebraic equation, power series, Laurent series, commutative image, polynomial grammar, formal languageAuthors
References
Abel N.H. Oeuvres completes, t. 1. Christiania: Grondahl, 1839. 294 p.
Тихомиров В. Абель и его великая теорема // Квант. 2003. № 1. С. 11-15.
Семушева А. Ю., Цих А.К. Продолжение исследований Меллина о решении алгебраических уравнений / Сб. "Комплексный анализ и дифференциальные операторы (К 150-летию С. В. Ковалевской)". Красноярск: Красноярский гос. ун-т, 2000. C. 122-134.
Aizenberg L. A. and Yuzhakov A. P.Integral Representations and Residues in Multidimensional Complex Analysis. Providence: AMS, 1983. 283 p.
Safonov K. V. On power series of algebraic and rational functions in Cn //j. Math. Analys. Appl. 2000. V. 243. P. 261-277.
Egorushkin O. I., Kolbasina I. V., and Safonov K.V. On solvability of systems of symbolic polynomial equations // Журнал СФУ. Математика и физика. 2016. Т. 9. №2. С. 166-172.
Егорушкин О. И., Колбасина И. В., Сафонов К. В. О применении многомерного комплексного анализа в теории формальных языков и грамматик // Прикладная дискретная математика. 2017. №37. С. 76-89.
Salomaa A. and Soitolla M. Automata-Theoretic Aspects of Formal Power Series. N.Y.: Springer Verlag, 1978. 167p.
Глушков В. М., Цейтлин Г. Е., Ющенко Е. Л. Алгебра. Языки. Программирование. Киев: Наукова думка, 1973. 319 с.
Семёнов А. Л. Алгоритмические проблемы для степенных рядов и контекстно-свободных грамматик // Доклады АН СССР. 1973. Т. 212. С. 50-52.

On the solution of a general algebraic equation by power series and applications in the theory of formal grammars | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 60. DOI: 10.17223/20710410/60/9
Download full-text version
Counter downloads: 126