On generic complexity of the graph clustering problem with bounded clusters | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 60. DOI: 10.17223/20710410/60/10

In this paper, we study the generic complexity of the graph clustering problem with bounded sizes of clusters. In this problem, the structure of object relations is presented as a graph: vertices correspond to objects, and edges connect similar objects. It is required to divide a set of objects into disjoint groups (clusters) of bounded sizes to minimize the number of connections between clusters and the number of missing links within clusters. It is proved that, under the condition P ≠ NP and P = BPP, for this problem there is no polynomial strongly generic algorithm. A strongly generic algorithm solves a problem not on the entire set of inputs, but on a subset whose frequency sequence converges exponentially to 1 as the size increases. To prove this result, we use the method of generic amplification, which allows to construct generically hard problems from the problems hard in the classical sense. The main component of this method is the cloning technique, which combines the inputs of a problem together into sufficiently large sets of equivalent inputs. Equivalence is understood in the sense that the problem is solved similarly for them.
Download file
Counter downloads: 2
  • Title On generic complexity of the graph clustering problem with bounded clusters
  • Headline On generic complexity of the graph clustering problem with bounded clusters
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 60
  • Date:
  • DOI 10.17223/20710410/60/10
Keywords
generic complexity, graph clustering
Authors
References
Krivanek M. and Moravek J. NP-hard problems in hierarchical-tree clustering // Acta Informatica. 1986. V. 23. P.311-323.
Bansal N., Blum A., and Chawla S. Correlation clustering // Machine Learning. 2004. V. 56. P. 89-113.
Shamir R., Sharan R., and Tsur D. Cluster graph modification problems // Discrete Appl. Math. 2004. V. 144. No. 1-2. P. 173-182.
Агеев А. А., Ильев В. П., Кононов А. В., Талевнин А. С. Вычислительная сложность задачи аппроксимации графов // Дискретный анализ и исследование операций. Сер. 1. 2006. Т. 13. №1. С. 3-11.
Ильев В. П., Ильева С.Д. О задачах кластеризации графов // Вестник Омского университета. 2016. №2. C. 16-18.
Ильев А. В., Ильев В. П. Об одной задаче кластеризации графа с частичным обучением // Прикладная дискретная математика. 2018. №42. С. 66-75.
Талевнин А. С. О сложности задачи аппроксимации графов // Вестник Омского университета. 2004. № 4. C. 22-24.
Ильев В. П., Навроцкая А. А. Вычислительная сложность задачи аппроксимации графами с компонентами связности ограниченного размера // Прикладная дискретная математика. 2011. №3(13). С. 80-84.
Рыбалов А. Н. О генерической сложности проблемы кластеризации графов // Прикладная дискретная математика. 2019. №46. С. 72-77.
Рыбалов А. Н. О генерической сложности ограниченной проблемы кластеризации графов // Прикладная дискретная математика. 2022. № 57. С. 91-97.
Kapovich I., Miasnikov A, Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks //j. Algebra. 2003. V. 264. No. 2. P. 665-694.
Гимади Э. X., Глебов Н. И., Перепелица В. А. Алгоритмы с оценками для задач дискретной оптимизации // Проблемы кибернетики. 1975. Т. 31. С. 35-42.
Impagliazzo R. and Wigderson A. P = BPP unless E has subexponential circuits: Derandomizing the XOR Lemma // Proc. 29th STOC. El Paso: ACM, 1997. P.220-229.
Вялый М., Китаев А., Шень А. Классические и квантовые вычисления. М.: МЦНМО, ЧеРо, 1999. 192 с.
 On generic complexity of the graph clustering problem with bounded clusters | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 60. DOI: 10.17223/20710410/60/10
On generic complexity of the graph clustering problem with bounded clusters | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 60. DOI: 10.17223/20710410/60/10
Download full-text version
Counter downloads: 125