Every year the International Olympiad in Cryptography Non-Stop University CRYPTO (NSUCRYPTO) offers mathematical problems for university and school students and, moreover, for professionals in the area of cryptography and computer science. The main goal of NSUCRYPTO is to draw attention of students and young researchers to modern cryptography and raise awareness about open problems in the field. We present problems of NSUCRYPTO’22 and their solutions. There are 16 problems on the following topics: ciphers, cryptosystems, protocols, e-money and cryptocurrencies, hash functions, matrices, quantum computing, S-boxes, etc. They vary from easy mathematical tasks that could be solved by school students to open problems that deserve separate discussion and study. So, in this paper, we consider several open problems on three-pass protocols, public and private keys pairs, modifications of discrete logarithm problem, cryptographic permutations, and quantum circuits.
Download file
Counter downloads: 14
- Title Mathematical problems and solutions of the Ninth International Olympiad in Cryptography NSUCRYPTO
- Headline Mathematical problems and solutions of the Ninth International Olympiad in Cryptography NSUCRYPTO
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 62
- Date:
- DOI 10.17223/20710410/62/4
Keywords
NSUCRYPTO, Olympiad, interpolation, cryptocurrencies, postquantum cryptosystems, matrices, hash functions, S-boxes, quantum circuits, number theory, ciphers, protocols, cryptographyAuthors
References
https://nsucrypto.nsu.ru/media/MediaFile/test_vector2.txt.
https://nsucrypto.nsu.ru/media/MediaFile/data_round2.txt.
Kapalova N., Dyusenbayev. D., and Sakan K. A new hashing algorithm - HAS01: development, cryptographic properties and inclusion in graduate studies. Global J. Engineering Education, 2022, vol. 24, no. 2, pp. 155-164.
https://nsucrypto.nsu.ru/media/MediaFile/test_vector.txt.
https://algassert.com/quirk.
Wuille P. Hierarchical Deterministic Wallets, https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki.
Babueva A. A. and Kyazhin S. N. Public keys for e-coins: partially solved problem using signature with rerandomizable keys. Prikladnava Diskretnava Matematika. Prilozhenie, 2023, no. 16, pp. 110-114.
Geut K. L. and Titov S. S. О blokirovke dvumernvkh affinnvkh mnogoobraziv [On the blocking of two-dimensional affine varieties]. Prikladnava Diskretnava Matematika. Prilozhenie, 2019, no. 12, pp. 7-10. (in Russian).
Ayat S. M. and Ghahramani M. A recursive algorithm for solving "A secret sharing" problem. Crvptologia, 2019, vol.43, no. 6, pp. 497-503.
Shcherba A., Fame E., and Lavdanska O. Three-pass cryptographic protocol based on permutations. IEEE 2nd Intern. Conf. ATIT, Kyiv, Ukraine, 2020, pp. 281-284.
Geut K.L., Kirienko K. A., Sadkov P. O., et al. О vavnvkh konstruktsivakh diva resheniva zadachi "A secret sharing" [On explicit constructions for solving the problem "A secret sharing"]. Prikladnava Diskretnava Matematika. Prilozhenie, 2017, no. 10, pp. 68-70. (in Russian).
Kiss R. and Nagy G. P. On the nonexistence of certain orthogonal arrays of strength four. Prikladnava Diskretnava Matematika, 2021, no. 52, pp. 65-68.
Gorodilova A. A., Tokareva N. N., Agievich S. V., et al. An overview of the Eight International Olympiad in Cryptography "Non-Stop University CRYPTO". Siberian Electronic Math. Reports, 2022, vol. 19, no. 1, pp. A9-A37.
https://nsucrypto.nsu.ru/unsolved-problems/.
Gorodilova A., Agievich S., Carlet C., et al. The Fifth International Students' Olympiad in Cryptography - NSUCRYPTO: problems and their solutions. Crvptologia, 2020, vol. 44, no. 3, pp.223-256.
Gorodilova A., Tokareva N., Agievich S., et al. On the Sixth International Olympiad in Cryptography NSUCRYPTO. J. Appl. Industr. Math., 2020, vol. 14, no. 4, pp. 623-647.
Gorodilova A. A., Tokareva N. N., Agievich S. V., et al. The Seventh International Olympiad in Cryptography: problems and solutions. Siberian Electronic Math. Reports, 2021, vol. 18, no. 2, pp. A4-A29.
Gorodilova A., Agievich S., Carlet C., et al. Problems and solutions of the Fourth International Students' Olympiad in Cryptography (NSUCRYPTO). Crvptologia, 2019, vol.43, no. 2, pp. 138-174.
Tokareva N., Gorodilova A., Agievich S., et al. Mathematical methods in solutions of the problems from the Third International Students' Olympiad in Cryptography., Prikladnava Diskretnava Matematika, 2018, no. 40, pp. 34-58.
Agievich S., Gorodilova A., Idrisova V., et al. Mathematical problems of the second international student's Olympiad in cryptography. Crvptologia, 2017, vol.41, no. 6, pp. 534-565.
https://nsucrypto.nsu.ru/outline/.
https://nsucrypto.nsu.ru/archive/2021/total_results/\#data.
Agievich S., Gorodilova A., Kolomeec N., et al. Problems, solutions and experience of the first international student's Olympiad in cryptography. Prikladnava Diskretnava Matematika, 2015, no. 3(29), pp.41-62.
https://nsucrypto.nsu.ru/.

Mathematical problems and solutions of the Ninth International Olympiad in Cryptography NSUCRYPTO | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 62. DOI: 10.17223/20710410/62/4
Download full-text version
Counter downloads: 88