Algebraic-geometry codes and decoding by error-correcting pairs | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 62. DOI: 10.17223/20710410/62/7

We consider the basic theory of algebraic curves and their function fields necessary for constructing algebraic geometry codes and a pair of codes forming an error-correction pair which is used in a precomputation step of the decoding algorithm for the algebraic geometry codes. Also, we consider the decoding algorithm and give the necessary theory to prove its correctness. As a result, we consider elliptic curves, Hermitian curves and Klein quartics and construct the algebraic geometry codes associated with these families of curves, and also explicitly define the error-correcting pairs for the resulting codes.
Download file
Counter downloads: 8
  • Title Algebraic-geometry codes and decoding by error-correcting pairs
  • Headline Algebraic-geometry codes and decoding by error-correcting pairs
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 62
  • Date:
  • DOI 10.17223/20710410/62/7
Keywords
Klein quartic, Hermitian curve, elliptic curve, decoding of algebraic geometry code, error-correcting pair, function field, divisor, algebraic geometry code
Authors
References
Couvreur A., Panaccione I. Power Error Locating Pairs, https://arxiv.org/abs/1907.11658v3.
Wesemeyer S. On the automorphism group of various Goppa codes // IEEE Trans. Inform. Theory. 1998. V.44. No.2. P.630-643.
Couvreur A., M arquez-Corbella I., and Pellikaan R. Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes // IEEE Trans. Inform. Theory. 2017. V. 63. P. 5404 5418.
Pellikaan R. On decoding by error location and dependent sets of error positions // Discrete Math. 1992. V. 106-107. P. 113-121.
M arquez-Corbella I. and Pellikaan R. Error-correcting pairs: a new approach to code-based cryptography // 20th Conf. ACA 2014, Jul 2014, New York, USA. https://hal.science/hal-01088433/document.
Pellikaan R. On the existence of error-correcting pairs // Statistical Planning Inference. 1996. V. 51. P.229-242.
Кокс Д., Литтл Дж., О'Ши Д. Идеалы, многообразия и алгоритмы. Введение в вычислителвные аспекты алгебраической геометрии и коммутативной алгебры. М.: Мир, 2000. 687 с.
Stichtenoth Н. Algebraic Function Fields and Codes. Springer Verlag, 1991.
Guruswami V. and Sudan M. Improved decoding of Reed - Solomon and algebraic geometry codes // IEEE Trans. Inform. Theory. 1999. V.45. P. 1757-1768.
Garcia A. and Stichtenoth H. A tower of Artin - Schreier extensions of function fields attaining the Drinfeld - Vladut bound // Inventiones Mathematicae. 1995. V. 121. P.211-222.
Ihara Y. Some remarks on the number of rational points of algebraic curves over finite fields //j. Fac. Sci. Univ. Tokyo. Sect. IA Math. 1981. V.28. P.721-724.
Tsfasman М. A., Vladutx S. G., and Zink Th. Modular curves, Shimura curves and Goppa codes, better than Varshamov - Gilbert bound // Math. Nachr. 1982. V. 109. P.21-28.
Гопгш В. Д. Коды, ассоциированные с дивизорами // Проблемвi передачи информации. 1977. Т.13. №1. С. 33-39.
 Algebraic-geometry codes and decoding by error-correcting pairs | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 62. DOI: 10.17223/20710410/62/7
Algebraic-geometry codes and decoding by error-correcting pairs | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2023. № 62. DOI: 10.17223/20710410/62/7
Download full-text version
Counter downloads: 86