Calculation of error-correcting pairs for an algebraicgeometric code | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2024. № 63. DOI: 10.17223/20710410/63/4

For an arbitrary algebrogeometric code and its dual, error-correcting pairs are explicitly calculated. Such a pair consists of codes that are necessary for an efficient decoding algorithm for a given code. The type of pairs depends on the powers of the divisors, with the help of which both the source code and one of the codes included in the pair are constructed. For an algebraic geometric code CL(D, G) of length and associated with a functional field F/Fq of genus g, pairs correcting t = ⌊(n - deg( G) - g - 1)/2⌋ errors, under certain restrictions on the degrees of divisors involved in their construction, are pairs of codes (Cl(D,F),Cl(D,G + F)⊥) or (CL(D,F⊥),Cl(D,F - G)). Restrictions on the degrees of divisors of codes (CL(D,F), CL(D,G - F)) constituting a pair correcting t = ⌊(deg( G) - 3g + 1)/2⌋ errors for the dual code CL(D, G)⊥) Cases where one of the codes involved in constructing a pair belongs to class of MDS codes and the parameters under which this situation is possible are derived. In addition, possible bounds for the divisors involved in the construction of error-correcting pairs for the subfield subcodes CL(D,G)|fp and CL< are calculated /sub>(D, G)⊥)|Fp of the original algebrogeometric code and its dual, with the expansion degree m = 2 (Fq = Fp2).
Download file
Counter downloads: 83
  • Title Calculation of error-correcting pairs for an algebraicgeometric code
  • Headline Calculation of error-correcting pairs for an algebraicgeometric code
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 63
  • Date:
  • DOI 10.17223/20710410/63/4
Keywords
functional field, algebraic-geometric code, error-correcting pair, subfield subcode
Authors
References
Justesen J., Larsen К., Jensen H., et al. Construction and decoding of a class of algebraic geometry codes // IEEE Trans. Inform. Theory. 1989. No. 35(4). P.811-821.
Skorobogatov A. N. and Vladut S. G. On the decoding of algebraic-geometric codes // IEEE Trans. Inform. Theory. 1990. No. 36(5). P. 1051-1060.
Pellikaan R. On decoding by error location and dependent sets of error positions // Discrete Math. 1992. No. 106-107. P.369-381.
Kotter R. A unified description of an error locating procedure for linear codes // Proc. Algebraic Combinatorial Coding Theory III. Hermes, 1992. P. 113-117.
Couvreur A., Marquez-Corbella I., and Pellikaan R. Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes // IEEE Trans. Inform. Theory. 2017. No.63. P.5404-5418.
Малыгина E. С., Кунинец А. А. Вычисление пар, исправляющих ошибки, для алгеброгеометрического кода // Прикладная дискретная математика. Приложение. 2023. №16. С.136-140.
Milne J.S. Algebraic Geometry. https://www.jmilne.org/math/CourseNotes/AG510.pdf.
Stichtenoth H. Algebraic Function Fields and Codes. Springer Verlag, 1991.
Pellikaan R. On the existence of error-correcting pairs // Statistical Planning and Inference. 1996. No. 51. P.229-242.
Marquez-Corbella I. and Pellikaan R. Error-correcting pairs: a new approach to code-based cryptography // 20th Conf. АСА 2014, Jul 2014, New York, USA. https ://hal. science/hal-01088433.
Mumford D. Varieties defined by quadratic equations // Questions on Algebraic Varieties. Berlin; Heidelberg: Springer, 2011. P.29-100.
 Calculation of error-correcting pairs for an algebraicgeometric code | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2024. № 63. DOI: 10.17223/20710410/63/4
Calculation of error-correcting pairs for an algebraicgeometric code | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2024. № 63. DOI: 10.17223/20710410/63/4
Download full-text version
Counter downloads: 103