The paper presents an overview of quasi-cyclic alternant codes and their structural analysis regarding the classification of automorphisms. We also have detailed methods for recovering the structure of a given code. The attractiveness of the family of considered codes lies in their cryptographic applications and, as in theory, in reducing the key length of post-quantum code-based schemes. In addition, this method of constructing codes is universal and can be used to obtain subfield subcodes of quasicyclic algebraic-geometric codes associated with an arbitrary curve with a known group of automorphisms. However, as a result of constructing quasi-cyclic alternant codes, it becomes possible to reduce the key security of the source code to a code with smaller parameters, which may not be resistant to a structural attack.
Download file
Counter downloads: 28
- Title Construction of quasi-cyclic alternant codes and their application in code-based cryptography
- Headline Construction of quasi-cyclic alternant codes and their application in code-based cryptography
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 65
- Date:
- DOI 10.17223/20710410/65/5
Keywords
quasi-cyclic codes, alternant codes, invariant codes, algebraic-geometric code, function fields, automorphism group of a codeAuthors
References
Barelli Е. On the Security of Some Compact Keys for McEliece Scheme, https://arxiv.org/abs/1803.05289. 2018.
Кунинец А. А., Малыгина E. С. Вычисление пар, исправляющих ошибки, для алгеброгеометрического кода // Прикладная дискретная математика. 2024. №63. С. 65-90.
Малыгина Е. С., Кунинец А. А., Раточка В. Л. и ф. Алгеброгеометрические коды и декодирование на основе пар, исправляющих ошибки // Прикладная дискретная математика. 2023. №62. С. 83-105.
Stichtenoth Н. Algebraic Function Fields and Codes. Springer Verlag, 1991.
Stichtenoth H. On automorphisms of geometric Goppa codes //j. Algebra. 1990. No. 130(1). P.113-121.
Conrad К. The Minimal Polynomial and some Applications, https://kconrad.math.uconn.edu/blurbs/1inmultialg/minpolyandappns.pdf. 2008.
Clark P.L. Linear Algebra: Invariant Subspaces, http://alpha.math.uga.edu/~pete/invariant_subspaces.pdf. 2013.
Faugere J.-C., Otmani A., Perret L., et al. Folding alternant and Goppa codes with non-trivial automorphism groups // IEEE Trans. Inform. Theory. 2016. No. 62(1). P.184-121.

Construction of quasi-cyclic alternant codes and their application in code-based cryptography | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2024. № 65. DOI: 10.17223/20710410/65/5
Download full-text version
Counter downloads: 67