On the generic complexity of the problem of computing the Euler function | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2024. № 65. DOI: 10.17223/20710410/65/6

We study the generic complexity of the problem of the Euler function computation. This problem has important applications in modern cryptography. For example, the cryptographic strength of the famous public key encryption system RSA is based on the assumption of its hardness. We prove that under the condition of worst-case hardness and P = BPP there is no polynomial strongly generic algorithm for this problem. For a strongly generic polynomial algorithm, there is no efficient method for random generation of inputs on which the algorithm cannot solve the problem. Thus, this result justifies the application of the problem of computing the Euler function in public key cryptography. To prove this theorem, we use the method of generic amplification, which allows us to construct generically hard problems from the problems that are hard in the classical sense. The main feature of this method is the cloning technique, which combines the input data of a problem into sufficiently large sets of equivalent input data. Equivalence is understood in the sense that the problem is solved in a similar way for them.
Download file
Counter downloads: 9
  • Title On the generic complexity of the problem of computing the Euler function
  • Headline On the generic complexity of the problem of computing the Euler function
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 65
  • Date:
  • DOI 10.17223/20710410/65/6
Keywords
generic complexity, Euler function
Authors
References
Kapovich L., Miasnikov A., Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks //j. Algebra. 2003. V. 264. No. 2. P. 665-694.
Рыбалов A. Н. О генерической сложности проблемы распознавания квадратичных вычетов // Прикладная дискретная математика. 2015. №2 (28). С. 54-58.
Рыбалов А. Н. О генерической сложности проблемы дискретного логарифма // Прикладная дискретная математика. 2016. УЗ (33). С.93-97.
Рыбалов А. Н. О генерической сложности проблемы извлечения корня в группах вычетов // Прикладная дискретная математика. 2017. У 38. С. 95-100.
Adleman L. М. and McCurley К. S. Open problems in number theoretic complexity, II // LNCS. 1994. V.877. P.291-322.
Rivest R., Shamir A., and Adleman L. A method for obtaining digital signatures and public-key cryptosystems // Commun. ACM. 1978. V. 21. Iss.2. P.120-126.
Impagliazzo R. and Wigderson A. p = BPP unless E has subexponential circuits: Derandomizing the XOR Lemma // Proc. 29th STOC. El Paso, ACM, 1997. P.220-229.
Вялый M., Катаев А., Шень А. Классические и квантовые вычисления. М.: МЦНМО, ЧеРо. 1999. 192 с.
Agrawal M., Kayal N., and Saxena N. PRIMES is in P // Ann. Math. 2004. V. 160. No. 2. P. 781-793.
 On the generic complexity of the problem of computing the Euler function | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2024. № 65. DOI: 10.17223/20710410/65/6
On the generic complexity of the problem of computing the Euler function | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2024. № 65. DOI: 10.17223/20710410/65/6
Download full-text version
Counter downloads: 65