On the generic complexity of the discrete logarithm problem in Lucas sequences | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2024. № 66. DOI: 10.17223/20710410/66/10

In this paper, we study the generic complexity of the discrete logarithm problem over Lucas sequences. This problem was exploited in the 1990s by the New Zealand cryptographer P. Smith to create an analogue of the classic Diffie - Hellman protocol, in which exponentiation modulo an integer is replaced by the operation of adding the elements of the Lucas sequence. It is proved that, given the worst-case intractability of the discrete logarithm problem in Lucas sequences and P = BPP, there exists a subproblem of this problem for which there is no polynomial generic algorithm. Thus, this result justifies the application of this algorithmic problem to public-key cryptography, where generic hardness is very important, i.e., hardness for almost all inputs. To prove the theorem, we use the method of generic amplification, which allows us to construct generically hard problems from problems that are hard in the classical sense. The main component of this method is the cloning technique, which combines the input data of a problem into sufficiently large sets of equivalent input data. Equivalence is understood in the sense that the problem is solved similarly for them.
Download file
Counter downloads: 3
  • Title On the generic complexity of the discrete logarithm problem in Lucas sequences
  • Headline On the generic complexity of the discrete logarithm problem in Lucas sequences
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 66
  • Date:
  • DOI 10.17223/20710410/66/10
Keywords
generic complexity, Lucas sequences, discrete logarithm
Authors
References
Smith Р. J. and Lennon М. J. J. LUC: a new public key system // Proc. IFIP/Sec'93. Toronto, Canada, 1993. P. 103-117.
Smith P. and Skinner C. A public-key cryptosystem and a digital signature system based on the Lucas function analogue to discrete logarithms // LNCS. 1995. V.917. P.355-364.
Bleichenbacher D., Bosma W., and Lenstra A. Some remarks on Lucas-based cryptosystems // LNCS. 1995. V.963. P.386-396.
Kapovich L., Miasnikov A., Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks //j. Algebra. 2003. V. 264. No. 2. P. 665-694.
Рыбалов A. H. О генерической сложности проблемы распознавания квадратичных вычетов // Прикладная дискретная математика. 2015. №2(28). С. 54-58.
Рыбалов А. Н. О генерической сложности проблемы дискретного логарифма // Прикладная дискретная математика. 2016. УЗ (33). С. 93-97.
Рыбалов А. Н. О генерической сложности проблемы извлечения корня в группах вычетов // Прикладная дискретная математика. 2017. У 38. С. 95-100.
Impagliazzo R. and Wigderson A. р = ВРР unless Е has subexponential circuits: Derandomizing the XOR Lemma. Proc. 29th STOC. El Paso, ACM, 1997. P.220-229.
Rosser J. B. and Schoenfeld L. Approximate formulas for some functions of prime numbers // Illinois J. Math. 1962. V.6. No. 1. P.64-94.
 On the generic complexity of the discrete logarithm problem in Lucas sequences | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2024. № 66. DOI: 10.17223/20710410/66/10
On the generic complexity of the discrete logarithm problem in Lucas sequences | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2024. № 66. DOI: 10.17223/20710410/66/10
Download full-text version
Counter downloads: 123