The presence of impossible differentials in a block cipher algorithm can lead to efficient methods for recovering the secret key. A large number of impossible differentials have been found for the KB-256 algorithm. This paper considers the modification of the feedback function to reduce the number of iterations to which they can be extended. A general approach to finding differences with probability 1 is proposed. It is shown that changing the number of summable sub-blocks in the feedback function will not reduce the maximum number of iterations to which an infeasible differential can be extended.
Download file
Counter downloads: 12
- Title On the possibility of modifying the KB-256 algorithm from the searching for impossible differentials view point
- Headline On the possibility of modifying the KB-256 algorithm from the searching for impossible differentials view point
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 67
- Date:
- DOI 10.17223/20710410/67/3
Keywords
Feistel scheme, circulant matrix, impossible transitions of block differences, KB-256Authors
References
Bini D., Del Corso G. M., Manzini G., and Margara L. Inversion of circulant matrices over Zm // LNCS. 1998. V. 1443. P. 719-730.
Guan Ph. and He Y. Exact results for deterministic cellular automata with additive rules // J. Stat. Phys. 1986. V.43. P.463-478.
ГОСТ 34.12-2018. Информационная технология. Криптографическая защита информации. Блочные шифры. М.: Стандартинформ, 2018.
Astrakhantsev R., Chuhno A., DmukhA., et al. Differences with high probability and impossible differentials for the KB-256 cipher // J.Comput. Virol. Hack. Tech. 2024. V. 20. P. 525-531.
Fomichev V. M. and Koreneva A. M. Encryption performance and security of certain wide block ciphers // J.Comput. Virol. Hack. Tech. 2020. V. 16. P. 197-216.
Knudsen L. Deal - a 128-bit block cipher // Complexity. 1998. V. 258. No. 2.
Fomichev V.M., Koreneva A. M., Miftakhutdinova A. R., et al. Evaluation of the maximum performance of block encryption algorithms. // Матем. вопр. криптогр. 2019. Т. 10. №2. С. 181-191.
Biham E., Biryukov A., and Shamir A. Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials // LNCS. 1999. V. 1592. P. 12-23.

On the possibility of modifying the KB-256 algorithm from the searching for impossible differentials view point | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2025. № 67. DOI: 10.17223/20710410/67/3
Download full-text version
Counter downloads: 206