On generic complexity of equation solving over the bicyclic monoid | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2025. № 67. DOI: 10.17223/20710410/67/6

In this paper, we study computational complexity of the problem of determining solvability equations over bicyclic monoid. This monoid, in addition to its theoretical significance in topology and semigroup theory, has applications in computer science and programming languages, for example, as a model for the Dyck language of balanced bracket expressions. We prove NP-completeness of the problem of determining solvability equations over bicyclic monoid. Also, we prove that if P = NP and P = BPP, then for this problem there is no strongly generic polynomial algorithm. This means that for any generic polynomial algorithm there exists an efficient method of randomly generating inputs on which the algorithm cannot solve the problem under consideration. The result points to a possible application of this problem in cryptography, where it is necessary that the problem of breaking a cryptosystem be hard for almost all inputs. To prove this theorem, we use the method of generic amplification, which allows to construct generically hard problems from the problems hard in the classical sense. The basis of this method is a technique of cloning, which combines the input data of a problem into sufficiently large sets of equivalent input data. Equivalence is understood in the sense that the problem is solved similarly for them.
Download file
Counter downloads: 11
  • Title On generic complexity of equation solving over the bicyclic monoid
  • Headline On generic complexity of equation solving over the bicyclic monoid
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 67
  • Date:
  • DOI 10.17223/20710410/67/6
Keywords
generic complexity, NP-completeness, bicyclic monoid
Authors
References
Рыбалов А. Н. О сложности решения уравнений над графами // Сиб. электрон. матем. изв. 2024. T.21. №1. С. 62-69.
Шевляков А. Н. Сплетения полугрупп и проблема Б. И. Плоткина // Алгебра и логика. 2023. Т. 62. №5. С. 665-691.
Baumslag G., Myasnikov A., and Remeslennikov V. Algebraic geometry over groups I. Algebraic sets and ideal theory // J. Algebra. 1999. V. 219. No. 1. P. 16-79.
Shevlyakov A. N. Equationally Noetherian varieties of semigroups and B. Plotkin's problem // Сиб. электрон. матем. изв. 2023. Т. 20. № 2. С. 724-734.
Nikitin A. Yu. and Shevlyakov A. N. On radicals over strict partial order sets // J. Physics: Conf. Ser. 2021. V. 1791. No. 012080. P. 1-6.
Kapovich I., Miasnikov A., Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks // J. Algebra. 2003. V. 264. No. 2. P. 665-694.
Rybalov A. and Shevlyakov A. Generic complexity of solving of equations in finite groups, semigroups and fields // J. Physics: Conf. Ser. 2021. V. 1901. No. 012047. P. 1-8.
Hopcroft J. E. and Ullman J. D. Formal Languages and Their Relation to Automata. Addison-Wesley, 1969. 288 p.
Diekert V. and Lohrey M. Word equations over graph products // Intern. J. Algebra Computation. 2008. V. 18. No. 3. P. 493-533.
Китаев А., Шень А., Вялый М. Классические и квантовые вычисления. М.: МЦНМО, ЧеРо, 1999. 192 с.
Схрейвер А. Теория линейного и целочисленного программирования. М.: Мир, 1991. 360 с.
 On generic complexity of equation solving over the bicyclic monoid | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2025. № 67. DOI: 10.17223/20710410/67/6
On generic complexity of equation solving over the bicyclic monoid | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2025. № 67. DOI: 10.17223/20710410/67/6
Download full-text version
Counter downloads: 216