A generalized Boolean function with flat Walsh - Hadamard spectrum is called generalized bent (gbent) function. Gbent function that coincides with its dual bent function is called self-dual. In this paper, we study isometric mappings of the set of all generalized Boolean functions into itself that preserve self-duality. A new mapping that preserves the self-duality of a gbent function is proposed. We introduce the concept of the action of an unitary operator on the set of generalized Boolean functions in n variables, represented by their characteristic vectors. Within the considered class of unitary operators, all mappings that preserve self-duality are described. A generalized form of isometric mapping corresponding to the complex conjugation of the characteristic vector is investigated.
Download file
Counter downloads: 1
- Title Characterization of some classes of isometric mappings that preserve self-duality of generalized bent function
- Headline Characterization of some classes of isometric mappings that preserve self-duality of generalized bent function
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 69
- Date:
- DOI 10.17223/20710410/69/2
Keywords
generalized Boolean function, self-dual bent finction, isometric mappingAuthors
References
Rothaus О. S. On “bent” functions // J.Combin. Theory. Ser. A. 1976. V. 20. No. 3. P. 300-305.
Tokareva N. Bent Functions: Results and Applications to Cryptography. Academic Press, 2015.220 р.
Schmidt K.-U. Quaternary constant-amplitude codes for multicode CDMA // IEEE Trans. Inform. Theory. 2009. V.55. No. 4. P. 1824-1832.
Stdnicd P., Martinsen T., Gangopadhyay S., and Singh B.K. Bent and generalized bent functions // Des. Codes Crvptogr. 2013. V.69. No. 1. P.77-94.
Sok L., Shi M., and Sole P. Classification and construction of quaternary self-dual bent functions // Crvptogr.Commun. 2018. V. 10. No. 2. P. 277-289.
Çeşmelioğlu A. and Meidl W. Equivalence for generalized Boolean functions // Adv. Math.Commun. 2024. V. 18. No. 6. P. 1590-1604.
Martinsen T., Meidl W., and Stanica P. Generalized bent functions and their Gray images // LNCS. 2017. V. 10064. P. 160-173.
Carlet C., Danielsen L. E., Parker M.G., and Sole P. Self-dual bent functions // Int. J. Inform. Coding Theory. 2010. V. 1. P.384-399.
Plou X.-D. Classification of self dual quadratic bent functions // Des. Codes Crvptogr. 2012. V.63. No. 2. P.183-198.
Feulner T., Sok L., Sole P., and Wassermann A. Towards the classification of self-dual bent functions in eight variables // Des. Codes Crvptogr. 2013. V.68. No. 1. P.395-406.
Kutsenko A. Metrical properties of self-dual bent functions // Des. Codes Crvptogr. 2020. V. 88. No. 1. P.201-222.
Kutsenko A. The group of automorphisms of the set of self-dual bent functions // Crvptogr.Commun. 2020. V. 12. No 5. P. 881-898.
Kutsenko A. Decomposing self-dual bent functions // Des. Codes Crvptogr. 2024. V. 92. No 1. P.113-144.
Токарева Л. И. Обобщения бент-функций. Обзор работ // Дискретн. анализ и исслед. опер. 2010. Т. 17, № 1. C. 34-64.
Davis J. A. and Jedwab J. Peak-to-mean power control in OFDM, Golav complementary sequences, and Reed - Muller codes // IEEE Trans. Inform. Theory. 1999. V. 45. No. 7. P. 2397-2417.
Марков А. А. О преобразованиях, не распространяющих искажения j j Избранные труды. Т. II. Теория алгорифмов и конструктивная математика, математическая логика, информатика и смежные вопросы. М.: МЦНМО, 2003. С. 70-93.
Погорелое Б. А., Пудовкина М. А. Классификация дистанционно транзитивных графов орбиталов надгрупп группы Джевонса // Дискретная математика. 2018. Т. 30. №4. С. 66-87.
Janusz G. J. Parametrization of self-dual codes by orthogonal matrices // Finite Fields Appl. 2007. V. 13. No.3. P.450-491.
Characterization of some classes of isometric mappings that preserve self-duality of generalized bent function | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2025. № 69. DOI: 10.17223/20710410/69/2
Download full-text version
Counter downloads: 56