In this paper, we study the generic complexity of two versions of the graph 3-coloring problem: the graph 3-coloring recognition problem and the graph 3-coloring search problem. For both problems, no efficient polynomial algorithms are known. The 3-coloring search problem is used in the well-known Blum zero-knowledge cryptographic protocol. We propose a polynomial generic algorithm for the graph 3-coloring recognition problem. For the 3-coloring search problem, we prove that if P = NP and P = BPP, then there is a subproblem of this problem for which there is no polynomial generic algorithm. The obtained result provides theoretical justification for applying the 3-coloring search problem in cryptography, an application where breaking a cryptographic algorithm must be difficult for almost all inputs. To prove this theorem, we use the method of generic amplification, which allows to construct generically hard problems from the problems hard in the classical sense.
Download file
Counter downloads: 1
- Title On the generic complexity of graph 3-coloring problems
- Headline On the generic complexity of graph 3-coloring problems
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 69
- Date:
- DOI 10.17223/20710410/69/8
Keywords
generic complexity, 3-coloring of graphsAuthors
References
Karp R. Reducibilitv among combinatorial problems // R. E. Miller, J. W. Thatcher, and J.D. Bohlinger (eds).Complexity of Computer Computations. The IBM Research Symposia Series. Boston: Springer, 1972. P.85-103.
Blum M. How to prove a theorem so no one else can claim it // Proc. ICM’86. AMS, 1986. P. 1444-1451.
Goldreich O., Micali S., and Wigderson A. Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems // Proc. SFCS’86. IEEE Computer Society, 1986. P. 174-187.
Kapovich L., Miasnikov A., Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks // J. Algebra. 2003. V. 264. No. 2. P. 665-694.
Рыбалов A. H. О генерической сложности проблемы распознавания квадратичных вычетов // Прикладная дискретная математика. 2015. №2 (28). С. 54-58.
Рыбалов А. Н. О генерической сложности проблемы дискретного логарифма // Прикладная дискретная математика. 2016. УЗ (33). С.93-97.
Рыбалов А. Н. О генерической сложности проблемы извлечения корня в группах вычетов // Прикладная дискретная математика. 2017. У 38. С. 95-100.
Impagliazzo R. and Wigderson А. р = ВРР unless Е has subexponential circuits: Derandomizing the XOR Lemma. Proc. 29th STOC. El Paso: ACM, 1997. P. 220-229.
Катаев А., Шень А., Вялый M. Классические и квантовые вычисления. М.: МЦНМО, ЧеРо. 1999. 192 с.
On the generic complexity of graph 3-coloring problems | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2025. № 69. DOI: 10.17223/20710410/69/8
Download full-text version
Counter downloads: 56