Boolean function f (x1, ..., xk) is called weakly positive (weakly negative) if f may be represented by CNF such asf ≡1ti=∧ (1isixα ∨i2 sx ∨...∨ikisx ), where αi∈{0, 1}, i = 1, ..., t, (respectively by CNF such as f ≡1ti=∧ (1isixα ∨ xsi2 ∨...∨ ikis x ), whereαi∈{0, 1}, i = 1, ..., t). These formulas are called reduced representations of weakly positive and weakly negative functions accordingly.The complexity of reducing the weakly positive and weakly negative functions represented by perfect CNF or algebraicnormal form is evaluated in this paper.
Download file
Counter downloads: 104
- Title ON THE COMPLEXITY OF WEAKLY POSITIVE AND WEAKLY NEGATIVE BOOLEAN FUNCTIONSREDUCING
- Headline ON THE COMPLEXITY OF WEAKLY POSITIVE AND WEAKLY NEGATIVE BOOLEAN FUNCTIONSREDUCING
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 1(1)
- Date:
- DOI
Keywords
слабо положительная (слабо отрицательная) булева функция , вычислительная сложность Authors
References
Dowling W.F., Gallier J.H. Linear-time algorithms for testing the satisfiability of propositional Horn formulae // J. Logic Programming. 1984. No. 3. P. 267 - 284.
Горшков С.П. Применение теории NP-полных задач для оценки сложности решения систем булевых уравнений // Обозрение прикл. промышл. матем., сер. дискрет. матем. 1995. Т. 2. Вып. 3. С. 325 - 398.
Schaefer Т. Complexity of satisfiability problems // Proceedings of the 10 Annual ACM Symposium on Theory of Computing Machinery. 1978. P. 216 - 226.

ON THE COMPLEXITY OF WEAKLY POSITIVE AND WEAKLY NEGATIVE BOOLEAN FUNCTIONSREDUCING | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2008. № 1(1).
Download full-text version
Download fileCounter downloads: 671