This survey contains basic results about properties, equivalence and methods of construction of APN-functions.
Download file
Counter downloads: 89
- Title APN-FUNCTIONS
- Headline APN-FUNCTIONS
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 3(5)
- Date:
- DOI
Keywords
криптография , почти бент-функции , почти совершенные нелинейные функции Authors
References
Carlet С. Vectorial Boolean Functions for Cryptography // www.roc.<inria.fr/secret/Claude>.Carlet/chap-vectorial-fcts.pdf. 2008.
Bracken C., Byrne E., Markin N., McGuire G. Quadratic Almost Perfect Nonlinear Functions with Many Terms // Cryptology ePrint Archive 2007/115.
Zha Z., Kyureghyan G., Wang X. A New Family of Perfect Nonlinear Binomials // Cryptology ePrint Archive 2008/196.
Brinkmann M., Leander G. On the Classification of APN Functions up to Dimension Five // Proceedings of the Workshop on Coding and Cryptography. 2007. P. 39-48.
Zeng X., Hu L., Yang Y., Jiang W. On the inequivalence of Ness-Helleseth APN functions // Cryptology ePrint Archive 2007/379.
Ness G., Helleseth T. A new family of ternary almost perfect nonlinear mappings // IEEE Transactions on Information Theory. 2007. V. 53. No. 7. P. 2581-2586.
Budaghyan L., Carlet С. Classes of Quadratic APN Trinomials and Hexanomials and Related Structures // Cryptology ePrint Archive 2007/098.
Budaghyan L., Carlet C., Leander G. Constructing new APN functions from known ones // Cryptology ePrint Archive 2007/063.
Budaghyan L., Carlet C., Leander G. Another class of quadratic APN binomials over Fn2: the case n divisible by 4. // Cryptology ePrint Archive 2006/428.
Edel Y., Pott A. A new almost perfect nonlinear function which is not quadratic // Cryptology ePrint Archive 2008/313.
Budaghyan L., Carlet C., Leander G. A class of quadratic APN binomials inequivalent to power functions // Cryptology ePrint Archive 2006/445.
Budaghyan L., Carlet C., Felke P., Leander G. An infinite class of quadratic APN functions which are not equivalent to power mappings // Proceedings of the IEEE International Symposium on Information Theory. 2006.
Budaghyan L., Carlet C., Pott A. New Classes of Almost Bent and Almost Perfect Nonlinear Polynomials // Proceedings of the Workshop on Coding and Cryptography. 2005. P. 306-315.
Helleseth Т., Rong G., Sandberg D. New families of almost perfect nonlinear power mappings // IEEE Transactions on Information Theory. 1999. V. 45. No. 2. P. 475-485.
Dobbertin H., Mills D., Mutter E., Pott A., Willems W. APN functions in odd characteristic // Discrete Mathematics. 2003. V. 267. P. 95-112.
Felke P. Computing the uniformity of power mappings: a systematic approach with the multivariate method over finite fields of odd characteristic // Ph. D. dissertation, University of Bochum. Germany. 2005.
Helleseth Т., Sandberg D. Some power mappings with low differential uniformity // Applicable Algebra in Engineering, Communication and Computing. 1997. V. 8. P. 363-370.
Dobbertin H. Almost perfect nonlinear power functions over GF(2n): A new case for n divisible 5 // Proc. of Finite Fields and Applications Fq5. Springer Verlag, 2001. P. 113-121.
Dobbertin H. Almost perfect nonlinear power functions over GF(2n): The Welch case // IEEE Transactions on Information Theory. 1999. V. 45. No. 4. P. 1271-1275.
Dobbertin H. Almost perfect nonlinear power functions over GF(2n): The Niho case // International J. of Computer and Information Sciences. 1999. V. 151. P. 57-72.
Kasami T. The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes // Information and Control. 1971. V. 18. P. 369-394.
Gold R. Maximal recursive sequence with 3-valued recursive cross-correlation functions // IEEE Transactions on Information Theory. 1968. V. 14. No. 1. P. 154-156.
Budaghyan L., Cariet С. On CCZ-equivalence and its use in secondary constructions of bent functions // Cryptology ePrint Archive 2009/042.
Edel Y., Kyureghyan G., Pott A. A new APN function which is not equivalent to a power mapping // IEEE Transactions on Information Theory. 2006. V. 52. No. 2. P. 744-747.
Cariet С., Charpin P., Zinoviev V. Codes, bent functions and permutations suitable for DES-like cryptosystems // Designs, Codes and Cryptography. 1998. V. 15(2). P. 125-156.
Сиделъников В. М. О взаимной корреляции последовательностей // Проблемы кибернетики. 1971. Т. 24. С. 15-42.
Chabaud F., Vaudenay S. Links between differential and linear cryptanalysis // Eurocrypt 1994, Lecture Notes in Computer Science. 1994. V. 950. P. 356-365.
Charpin P., Kyureghyan G. On a class of permutation polynomials over F2n // SETA 2008, Lecture Notes in Computer Science. 2008. V. 5203. P. 368-376.
Beth Т., Ding С. On almost perfect nonlinear permutations // Eurocrypt 1993, Lecture Notes in Computer Science. 1994. V. 765. P. 65-76.
Berger Т., Canteaut A., Charpin P., Laigle-Chapuy Y. On Almost Perfect Nonlinear Functions Over F2n // IEEE Transactions on Information Theory. 2006. V. 52. No. 9. P. 4160-4170.
Bierbrauer J. New semifields, PN and APN functions // <http://www.math.mtu.edu->/jbierbra/HOMEZEUGS/PNpub06Dez08.pdf, 2008.
Voloch J. F. Symmetric Cryptography and Algebraic Curves // Proceedings of Algebraic Geometry and its Applications. 2007. P. 135-141.
Nyberg K., Knudsen L. R. Provable Security Against Differential Cryptography // Crypto 1992, Lecture Notes in Computer Science. V. 740. P. 566-574.
Nyberg K. Differently uniform mappings for cryptography // Eurocrypt 1993, Lecture Notes in Computer Science. 1994. V. 765. P. 55-64.
Nyberg K. Perfect nonlinear S-boxes // Eurocrypt 1991, Lecture Notes in Computer Science. 1991. V.547. P. 378-386.
Biham E., Shamir A. Provable Security Against Differential Cryptography // Crypto 1990, Lecture Notes in Computer Science. 1991. V. 537. P. 2-21.

APN-FUNCTIONS | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2009. № 3(5).
Download full-text version
Download fileCounter downloads: 206