The minimal Hamming distance 2n/2 between distinct bent functions of n variables is obtained. We prove that two bent functions are at the minimal distance if and only if the set of vectors for which they differ is a linear manifold and both functions are affine ones on it. We give an algorithm for constructing all the bent functions being at the minimal distance from the given bent function. Some experimental data are presented for bent functions of the small number of variables
Download file
Counter downloads: 70
- Title PROPERTIES OF BENT FUNCTIONS WITH MINIMAL DISTANCE
- Headline PROPERTIES OF BENT FUNCTIONS WITH MINIMAL DISTANCE
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 4(6)
- Date:
- DOI
Keywords
OFDM , CDMA , bent function , OFDM , CDMA , бент-функция Authors
References
Braeken A. Cryptographic properties of Boolean functions and S-boxes // Ph. D. Thesis, Katholieke Univ. Leuven, 2006.
Dillon J. F. A survey of bent functions // The NSA Technical J. 1972. Special Issue. P. 191-215.
Rothaus O. On bent functions // J. Combin. Theory. Ser. A. 1976. V. 20. No. 3. P. 300-305.
Dillon J. F. Elementary Hadamard Difference sets // Ph. D. Thesis. Univ. of Maryland, 1974.
McFarland R. L. A family of difference sets in non-cyclic groups // J. Combin. Theory. Ser. A. 1973. V. 15. No. 1. P. 1-10.
Ященко В. В. О критерии распространения для булевых функций и о бент-функциях // Пробл. передачи информации. 1997. Т. 33. Вып. 1. С. 75-86.
Cariet С. Boolean Functions for Cryptography and Error Correcting Codes // Chapter of the monograph «Boolean Methods and Models», Cambridge Univ. Press / eds. P. Hammer, Y. Crama, to appear. Prelim. version is available at www.<rocq.inria.fr/secret/Claude.Carlet/chap-fcts-Bool.pdf>.
Логачев О. А., Сальников А. А., Ященко В. В. Булевы функции в теории кодирования и криптологии. М.: МЦНМО, 2004. 470 с.
Paters on К. G. Sequences For OFDM and Multi-code CDMA: two problems in algebraic Coding Theory // Sequences and their applications. Seta 2001. Second Int. Conference (Bergen, Norway, May 13-17, 2001). Proc. Berlin: Springer, 2002. P. 46-71.
Токарева Н. Н. Бент-функции: результаты и приложения. Обзор работ // Прикладная дискретная математика. 2009. №3. С. 15-37.

PROPERTIES OF BENT FUNCTIONS WITH MINIMAL DISTANCE | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2009. № 4(6).
Download full-text version
Download fileCounter downloads: 279