In this paper we consider the groups of the left (right) automorphisms of matrices and their automorphism groups. Without loss of generality one can take square matrices over the ring of integers. For such a matrix, we suggest the notion of a quasiautomorphism and the correspondent notion of its quasiautomorphism group. The description of doubly transitive groups of the left (right) automorphisms is given with the help of the block designs. The knowledge of the structure of the balanced block designs is used for the calculation of the left (right) automorphisms and the quasiautomorphism groups of circulants. The problem that is under consideration is closely connected with the description of the graph automorphisms, the graph isomorphism problem, and also with the group classification of Boolean functions
Download file
Counter downloads: 79
- Title ON AUTOMORPHISM GROUPS OF MATRICES
- Headline ON AUTOMORPHISM GROUPS OF MATRICES
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 3(9)
- Date:
- DOI
Keywords
block designs, circulants, блок-схемы, (quasi)automorphism groups of matrices, циркулянты, группы квазиавтоморфизмов матриц, группы автоморфизмов матрицAuthors
References
Wielandt H. Finite permutation groups. New York; London: Academic Press, 1964.
Холл М. Комбинаторика. М.: Мир, 1970.
Adam A. Research problem 2-10 // J. Combin. Theory. 1967. V.2. P. 393.
Dembowski P. Finite geometries. Berlin and New York: Springer Verlag, 1968.
Тараканов В. Е. Группы автоморфизмов циркулянтов и присоединенные матрицы графов // Математические заметки. 1999. Т. 65. Вып.3. С. 402-411.
Huang Q., Meng J. On the isomorphism and automorphism groups of circulants // Grafs Combin. 1996. V. 12. P. 179-187.
Feit W. On symmetric balanced incomplete block designs with doubly transitive automorphism groups // J. Combin. Theory. 1973. V. 14. No. 2. P. 221-247.
Feit W. Automorphisms of symmetric balanced incomplete block designs // Math. Z. 1970. No. 118. P. 40-49.
Chao C. On groups and graphs // TMAS. 1965. V. 118. No. 6. P. 488-497.
Давыдов Э.Г. О симметрии графов // Вопросы кибернетики. М., 1973. С. 26-49.
Егоров В. Н., Марков А. И. О гипотезе Адама для графов с циркулянтными матрицами смежности вершин // ДАН СССР. 1979. Т. 249. №3. С. 529-532.

ON AUTOMORPHISM GROUPS OF MATRICES | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2010. № 3(9).
Download full-text version
Download fileCounter downloads: 208