A METHOD FOR CONSTRUCTION OF CELLULAR AUTOMATA SIMULATING PATTERN FORMATION PROCESSES | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2010. № 4(10).

A method for constructing Cellular Automata (CA) which simulate self-organizing process of stable patterns formation is proposed. The method is based on parallel composition of two CA. Two basic cases are considered: 1) when one CA operates independently having a controlling influence on the other CA behavior; 2) when both CA interact at each iteration step. The method is illustrated by the computer simulation results for two selforgzaniz- ing systems: pattern formation on heated surface and achieving balance between prey and predator
Download file
Counter downloads: 68
  • Title A METHOD FOR CONSTRUCTION OF CELLULAR AUTOMATA SIMULATING PATTERN FORMATION PROCESSES
  • Headline A METHOD FOR CONSTRUCTION OF CELLULAR AUTOMATA SIMULATING PATTERN FORMATION PROCESSES
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 4(10)
  • Date:
  • DOI
Keywords
selforgani- zation, dissipative structures, mathematical modelling, cellular automata, самоорганизация, дис- сипативные структуры, клеточный автомат, математическое моделирование
Authors
References
Свирежев Ю. М. Нелинейные волны, диссипативные структуры и катастрофы в экологии. М.: Наука, 1987. 320 c.
Toffolli T, Margolus N. Cellular Automata Machine. USA: MIT Press, 1987. 280 p.
Бандман О. Л. Методы композиции клеточных автоматов для моделирования пространственной динамики // Вестник Томского госуниверситета. Приложение. 2002. №9(1). С.188-192.
Бандман О. Л. Дискретное моделирование физико-химических процессов // Прикладная дискретная математика. 2009. №3(5). C. 33-49.
Toffolli T. Cellular Automata as an Alternative to (rather than Approximation of) Differential Equations in Modeling Physics // Physica D. 1984. V. 10. P. 117-127.
Wolfram S. Statistical mechanics of Cellular automata // Rev. Mod. Phys. 1993. V. 55. P. 607-640.
Бандман О. Л. Клеточно-автоматные модели пространственной динамики // Системная информатика: Сб. научн. тр. Новосибирск: Изд-во СО РАН, 2006. Вып. 10. C. 59-111.
Achasova S., Bandman O., Markova V., Piskunov S. Parallel Substitution Algorithm. Theory and Application. Singapore: World Scientific, 1994. 180 p.
Simulating Complex Systems by Cellular Automata / eds. A. G. Hoekstra, J. Kroc, P.M.A. Sloot. Berlin: Springer, 2010. 350p.
Wolfram S. A new kind of science. USA: Wolfram Media Inc., 2002. 1197p.
Chua L. CNN: A paradigm of complexity. Singapore: World Scientific, 2002. 320 p.
Ванаг В. К. Диссипативные структуры в реакционно-диффузионных системах. М.; Ижевск: Ин-т компьютерных исследований, 2008. 300 c.
Elokhin V. I., Latkin E. I., Matveev A. V., Gorodetskii V. V. Application of Statistical Lattice Models to the Analysis of Oscillatory and Autowave Processes on the Reaction of Carbon Monoxide Oxidation over Platinum and Palladium Surfaces // Kinet. Catalys. 2003. V. 4. No. 5. P. 672-700.
Deutsch A., Dormann S. Cellular Automaton Modeling of Biological Pattern Formarion. Berlin: Birkhauser, 2004. 330 p.
Turing A.M. The chemical basis of Morphogenesis // Phil. Trans. R. Soc. London. 1952. V. B 237. No. 641. P. 37-82.
Жаботинский А. М. Периодические процессы окисления малоновой кислоты в растворе (исследование кинетики реакции Белоусова) // Биофизика. 1964. Т. 9. C. 306-310.
Nicolis G., Prigogine I. Self-Organization in Nonequilibrium Systems. N.Y.: Wiley- Interscience, 1977. 236 p.
 A METHOD FOR CONSTRUCTION OF CELLULAR AUTOMATA SIMULATING PATTERN FORMATION PROCESSES | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2010. № 4(10).
A METHOD FOR CONSTRUCTION OF CELLULAR AUTOMATA SIMULATING PATTERN FORMATION PROCESSES | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2010. № 4(10).