Generating functions for sequences of disordered covers numbers | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2011. № 1(11).

This article considers generating functions for sequencesof combinatorial numbers, which are the amounts of covers of a finite set by subsetsof fixed cardinalities. The analysis of the generating functions is performed. Special casesof them are shown. The series of recurrence relations are obtained.
Download file
Counter downloads: 89
  • Title Generating functions for sequences of disordered covers numbers
  • Headline Generating functions for sequences of disordered covers numbers
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 1(11)
  • Date:
  • DOI
Keywords
generating functions, cover, finite set, combinatoric numbers, производящие функции, комбинаторные числа, конечное множество, покрытие
Authors
References
Ландо С. К. Лекции о производящих функциях. М.: МЦНМО, 2002.
Кнут Д., Грэхем Ф., Поташник О. Конкретная математика. Основание информатики. М.: Мир, 2006.
Macula A. J. Covers of a finite set // Mathematics Magazine. V. 67. No. 2. P. 141-144.
ComtetL. Advanced Combinatorics. The Art of Finite and Infinate Expansions. Dordrecht, Ho11and: D. Reide1 Pub1ishing Company, 1974.
Ганопольский Р. М. Число неупорядоченных покрытий конечного множества подмножествами фиксированного размера // Прикладная дискретная математика. 2010. №4(10). С.5-17
 Generating functions for sequences of disordered covers numbers | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2011. № 1(11).
Generating functions for sequences of disordered covers numbers | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2011. № 1(11).