A strongly connected aperiodic directedgraph with constant out-degree is called admissible. An automaton A is a coloring of admissiblegraph G if the underlying graph of A equals G. A word is called synchronizingfor an automaton A if it takes A to a one particular state no matter of the starting state.Optimal coloring of admissible graph G is a synchronizing coloring with shortest reset wordamong all synchronizing colorings of G. The length of the corresponding reset word is calledoptimal coloring value. We prove that unless P = N P , no polynomial-time algorithm approximatesoptimal coloring or optimal coloring value within a factor less than 2 in the3-letter alphabet case. We also extend this result to the 2-letter alphabet case.
Download file
Counter downloads: 85
- Title A note on polynomial approximation of synchronizing optimal coloring
- Headline A note on polynomial approximation of synchronizing optimal coloring
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 2(12)
- Date:
- DOI
Keywords
optimal coloring, synchronizing automata, road coloring problem, синхронизируемые автоматы, кратчайшее синхронизирующее слово, поиск оптимальной раскраски, проблема раскраски дорогAuthors
References
Гэри M., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.
Berlinkov M. Approximating the Minimum Length of Synchronizing Words is Hard // LNCS. 2010. V. 6072. P. 37-47.
Beal M. and Perrin D. A quadratic algorithm for road coloring // arXiv:0803.0726. 2008.
Eppstein D. Reset sequences for monotonic automata // SIAM J. Comput. 1990. V. 19. P. 500-510.
Adler R. L. and Weiss B. Similarity of automorphisms of the torus // Mem. Amer. Math. Soc. 1970. V. 98. P. 1-43.
Volkov M. Synchronizing Automata and the Cerny conjecture // LNCS. 2008. V. 5196. P. 11-27.
Cerny J. Poznamka k homogennym eksperimentom s konecnymi automatami // Matematickofyzikalny Casopis Slovensk. Akad. Vied (in Slovak). 1964. V. 14. No.3. P.208-216.
Adler R. L., Weiss B., and Goodwyn L. W. Equivalents of topological Markov shifts // Isr. J. Math. 1977. No. 27. P. 49-63.
Trahtman A. N. The Road Coloring Problem // arxiv:0709.0099. 2007.

A note on polynomial approximation of synchronizing optimal coloring | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2011. № 2(12).
Download full-text version
Download fileCounter downloads: 195