An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 1(19).

An estimation for the nonlinearity of Dalai's Boolean functions with the maximal algebraic immunity in even number of variables is given. It is proved that the estimation is achieved.
Download file
Counter downloads: 70
  • Title An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity
  • Headline An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 1(19)
  • Date:
  • DOI
Keywords
algebraic immunity, nonlinearity, Boolean functions, алгебраическая иммунность, нелинейность, булевы функции
Authors
References
Li Ch. A survey on construction of Boolean function with optimum algebraic immunity (AI) // http://www.frisc.no/wp-content/uploads/2011/10/Li-A-survey-on-construc-tions-of-BFs-with-optimum-AI.pdf
Лобанов М. С. Точное соотношение между нелинейностью и алгебраической иммунностью // Дискретная математика. 2006. Вып. 18. №3. С. 152-159.
Dalai D.K., Maitra S., and Sarkar S. Basic theory in construction of Boolean functions with maximum possible annihilator immunity // Designs, Codes and Cryptography. 2006. V. 40. Iss. 1. P. 41-58.
Meier W, Pasalic E., and Carlet C. Algebraic attacks and decomposition of Boolean functions // LNCS. 2004. V. 3027. P. 474-491.
Courtois N. and Meier W. Algebraic attacks on stream ciphers with liner feedback // LNCS. 2003. V. 2656. P. 345-359.
 An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 1(19).
An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 1(19).