For underdetermined data, binary representations are defined, making it possible to reconstruct the initial data entirely (not only their specifications) and being fairly compact. To solve the problem of their design, some special matrices called selective ones are introduced and studied. They generalize the disjunct (cover-free) matrices widely applied in Computer Science. Some characteristics of selective matrices and estimates of data representation length via some data parameters are investigated. Problems related to the complexity of representations design are considered too.
Download file
Counter downloads: 71
- Title Binary representations of underdetermined data and superimposed codes
- Headline Binary representations of underdetermined data and superimposed codes
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 1(19)
- Date:
- DOI
Keywords
polynomial algorithm, cover-free family, superimposed code, disjunct matrix, representation length, sets system basis, binary representation, compression, underdetermined data, полиномиальный алгоритм, свободное от покрытий семейство, дизъюнктивный код, дизъюнктивная матрица, длина представления, базис системы множеств, двоичное представление, сжатие, недоопределённые данныеAuthors
References
D'yachkov A. G., Macula A. J., and Rykov V. V. New constructions of superimposed codes // IEEE Trans. Inform. Theory. 2000. V. 46. No. 1. P. 284-290.
Hwang F. K. and Sos V. T. Non-adaptive hypergeometric group testing // Studia Scientiarum Mathecarum Hungarica. 1987. V.22. P. 257-263.
Ruszinko M. On the upper bound of the size of the r-cover-free families // J. Combinator. Theory. Ser. A. 1994. V. 66. P. 302-310.
Furedi Z. On r-cover-free families // J. Combinator. Theory. Ser. A. 1996. V. 73. P. 172-173.
Cheng V., DuD.-Z., and Lin G. On the upper bounds of the minimum number of rows of disjunct matrices // Optimizat. Lett. 2009. V.3. Iss.2. P. 297-302.
Erdos P., Frankl P., and Furedi Z. Families of finite sets in which no set is covered by the union of r others // Israel J. Math. 1985. V. 51, No. 1-2. P. 79-89.
Коспанов Э. Ш. О кодировании (0,1)-матриц конъюнкциями // Дискретный анализ. Сборник трудов. Вып. 27. Новосибирск: Институт математики СО АН, 1975. С. 17-22.
Mitchell C. J. and Piper F. C. Key storage in secure networks // Discr. Appl. Math. 1988. V. 21. P. 215-228.
Quinn K. A. S. Bounds for key distribution patterns // J. Cryptology. 1999. V. 12. P. 227-239.
Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982. 416 с.
Dyer M., Fenner T., Frieze A., and Thomason A. On key storage in secure networks // J. Cryptology. 1995. V. 8. P. 189-200.
Porat E. and Rotshchild A. Explicit non-adaptive combinatorial group testing schemes // Automata, Languages and Programming. LNCS. 2008. V. 5125. P. 748-759.
Chuzhoy J. and KhannaS. An O(k3 log n)-approximation algorithm for vertex-connectivity survivable network design //Proc. 50th Annual IEEE Symp. Foundation Computer Science (FOCS). Washington: IEEE Computer Society, 2009. P. 437-441.
Дьячков А. Г., Рыков В. В. Границы длины дизъюнктивных кодов // Проблемы передачи информации. 1982. Т. 18. Вып.3. С. 7-13.
Kumar R., Rajagopalan S., and Sahai A. Coding construction for blacklisting problems without computational assumptions // LNCS. 1999. V. 1666. P. 609-623.
Kautz W. H. and Singleton R. C. Nonrandom binary superimposed codes // IEEE Trans. Inform. Theory. 1964. V. 10. No. 4. P. 363-377.
Шоломов Л. А. Двоичное представление недоопределённых данных // Доклады Академии наук. 2013. Т. 448. №3. С. 275-278.
Шоломов Л. А. Элементы теории недоопределённой информации // Прикладная дискретная математика. Приложение. 2009. №2. С. 18-42.

Binary representations of underdetermined data and superimposed codes | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 1(19).
Download full-text version
Download fileCounter downloads: 231