An additive approach to the definition of nonlinearity degree for a discrete function on a cyclic group is proposed. For elementary abelian groups, this notion is equivalent to the ordinary "multiplicative" one. For polynomial functions on the ring of integers modp n, this notion is equivalent to the minimal degree of a polynomial. It is proved that the non-linearity degree on a cyclic group is a finite number if and only if the order of the group is a power of a prime. An upper bound for the nonlinearity degree of functions on a cyclic group of order p n is given.
Download file
Counter downloads: 73
- Title An additive approach to nonlinearity degree of discrete functions on a primary cyclic group
- Headline An additive approach to nonlinearity degree of discrete functions on a primary cyclic group
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 2(20)
- Date:
- DOI
Keywords
nonlinearity degree, discrete functions, степень нелинейности, дискретные функцииAuthors
References
Chen Z. On polynomial functions from Zni x Zn2 x.. Znr to Zm // Discrete Math. 1996. V.162. P. 67-76.
Davio M., Deschamps J. P., and ThayseA. Discrete and switching functions. Budapest: Academiai Kiado, 1974.
Глухов М. М., Елизаров В. П., Нечаев А. А. Алгебра. Учебник в 2-х т. Т.Н. М.: Гелиос АРВ, 2003.
Keller G. and Olson F. Counting polynomial functions (mod pn) // Duke Math. J. 1968. V. 35. P. 835-838.
Черемушкин А. В. Аддитивный подход к определению степени нелинейности дискретной функции // Прикладная дискретная математика. 2010. №2(8). С. 22-33.

An additive approach to nonlinearity degree of discrete functions on a primary cyclic group | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 2(20).
Download full-text version
Download fileCounter downloads: 192