An upper bound for the algebraic immunity of some Dillon's bent functions is obtained. It is shown that for k = 2, 3,..., 8 the degree for Tu and Deng's function in 2
variables used in the Dillon's method for constructing bent functions of the maximum algebraic immunity equals k — 1.
Download file
Counter downloads: 235
- Title Algebraic immunity upper bound for some Dillon's bent functions
- Headline Algebraic immunity upper bound for some Dillon's bent functions
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 6 (Приложение)
- Date:
- DOI
Keywords
булева функция, нелинейность, бент-функция, алгебраическая иммунность, Boolean function, nonlinearity, bent function, algebraic immunityAuthors
References
Dillon J. F. Elementary Hadamard difference sets. Ph. D. Thesis. Univ. of Maryland, 1974.
Tu Z. and Deng Y. A conjecture about binary strings and its applications on constructing Boolean functions with optimal algebraic immunity // Designs, Codes and Cryptography. 2011. V.60. Iss. 1. P. 1-14.

Algebraic immunity upper bound for some Dillon's bent functions | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 6 (Приложение).
Download full-text version
Download fileCounter downloads: 1888