On a nonlinearity degree definition for a discrete function on a cyclic group | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 6 (Приложение).

An additive approach is proposed to the definition of the nonlinearity degree of a discrete function on a cyclic group. For elementary abelian groups, this notion is equivalent to ordinary "multiplicative" one. For polynomial functions on a ring of integers mod p , this notion is equivalent to minimal degree of a polynomial. It is shown that the nonlinearity degree is a finite number if and only if the order of the group is a power of a prime. An upper bound for the nonlinearity degree of functions on a cyclic group of order p is given.
Download file
Counter downloads: 204
  • Title On a nonlinearity degree definition for a discrete function on a cyclic group
  • Headline On a nonlinearity degree definition for a discrete function on a cyclic group
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 6 (Приложение)
  • Date:
  • DOI
Keywords
дискретные функции, степень нелинейности, nonlinearity degree, discrete functions
Authors
References
Черемушкин А. В. Аддитивный подход к определению степени нелинейности дискретной функции // Прикладная дискретная математика. 2010. №2(8). С. 22-33.
Keller G. and Olson F. Counting polynomial functions (mod pn) // Duke Math. J. 1968. V. 35. P. 835-838.
Chen Z. On polynomial functions from Zni x Zn2 x.. Znr to Zm // Discrete Math. 1996. V.162. P. 67-76.
Черемушкин А. В. Аддитивный подход к определению степени нелинейности дискретной функции на циклической группе примарного порядка // Прикладная дискретная математика. 2013. №2(20). С. 26-38.
 On a nonlinearity degree definition for a discrete function on a cyclic group | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 6 (Приложение).
On a nonlinearity degree definition for a discrete function on a cyclic group | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 6 (Приложение).
Download full-text version
Counter downloads: 1887
Download file