This paper describes new algorithm for breaking McEliece cryptosystem, being built on Reed — Muller binary code RM(r, m).The algorithm calculates the private key from the public key using O(n
+ n
log
n) bit operations, where n = 2
, d = (r, m — 1). In case of limited d, the attack has a polynomial complexity. Practical results of implementation show that McEliece cryptosystems, based on the Reed — Muller binary code of length n = 65526 bits, can be broken in less than 7 hours on a personal computer.
Download file
Counter downloads: 173
- Title The failure of Mceliece PKC based on Reed — Muller codes
- Headline The failure of Mceliece PKC based on Reed — Muller codes
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 6 (Приложение)
- Date:
- DOI
Keywords
криптосистема Мак-Элиса, коды Рида — Маллера, полиномиальная сложность атаки, McEliece cryptosystem, Reed — Muller code, polynomial attack, McEliece cryptosystem, Reed — Muller code, polynomial attackAuthors
References
Мак-Вильямс Ф. Дж., Слоэн Н.Дж. Теория кодов, исправляющих ошибки. М.: Связь, 1979.
Сидельников В. М. Открытое шифрование на основе двоичных кодов Рида — Маллера // Дискретная математика. 1994. Т. 6. №2. С. 3-20.
Minder L. and Shokrollahi A. Cryptanalysis of the Sidelnikov cryptosystem // LNCS. 2007. V. 4515. P. 347-360.
The failure of Mceliece PKC based on Reed — Muller codes | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 6 (Приложение).
Download full-text version
Download fileCounter downloads: 1889